五年级数学上册教案

时间:2024-01-06 08:00:45 教案 我要投稿

北师大版五年级数学上册教案

  作为一名教学工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的北师大版五年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

北师大版五年级数学上册教案

北师大版五年级数学上册教案1

  教学目标:

  1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。

  3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

  教学重点:

  1、理解掌握质数、合数的概念。

  2、初步学会准确判断一个数是质数还是合数。

  教学难点:区分奇数、质数、偶数、合数。

  教学过程:

  一、探究发现,总结概念:

  1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

  学生独立思考,然后全班交流。

  2、师:这样的四个小正方形能拼出几个不同的长方形?

  学生各自独立思考,想像后举手回答。

  3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

  师:我看到许多同学不用画就已经知道了。(指名说一说)

  4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

  学生几乎是异口同声地说:会越多。

  师:确定吗?(引导学生展开讨论。)

  5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。

  先让学生小组讨论,然后全班交流,师根据学生的回答板书。

  师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的'数叫质数,什么样的数叫合数呢?

  学生独立思考后,在小组内进行交流,然后再全班交流。

  引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

  6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

  7、师:那你们认为“1”是什么数?

  让学生独立思考,后展开讨论。

  二、动手操作,制质数表。

  1、师出示:73。让学生思考着它是不是质数。

  师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

  师:这表从哪来呢?

  (教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

  2、让学生动手制作质数表。

  3、集体交流方法。

  三、练习巩固

  完成练习四第1、2题。

  四、课题小结:

  这节课你在激烈的讨论中有什么收获?

北师大版五年级数学上册教案2

  教学内容:人教版小学五年级数学质数和合数

  教学目标: 1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类、

  2、培养学生细心观察全面概括、准确判断、自主探索、独立思考、合作交流的能力。

  教学重点:能准确判断一个数是质数还是合数、

  教学难点:找出100以内的质数、

  教学过程:

  一、复习导入(加深前面知识的理解,为新知作铺垫)

  下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、

  3和15 4和24 49和7 91和13

  指名回答。

  二、小组合作学习质数和合数的的概念。

  全班分两组探讨并写出1~20各数的因数。

  1、观察各数因数的个数的特点。

  2、板前填写师出示的表格。

  只有一个因数

  只有1和它本身两个因数

  除了1和它本身还有别的因数

  3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

  4、举例。

  你能举一些质数的例子吗?

  你能举一些合数的例子吗?

  练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

  5。探究“1”是质数还是合数。

  刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

  引导学生明确:1既不是质数也不是合数。

  练习:自然数中除了质数就是合数吗?

  三、给自然数分类。

  1、想一想

  师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

  生:质数,合数,1。

  2、说一说。

  既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

  引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

  四、师生学习教材24页的例1。

  老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

  1、师引导学生找出30以内的质数。

  提问:这些数里有质数、合数和1,现在要保留30以内的'质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

  (特殊记忆20以内的质数,因为它常用。)

  2。小组探究100以内的质数。

  3。汇报100以内的质数。师生共同整理100以内的质数表。

  4。应用100以内质数表:

  练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?

  五、思维训练。

  有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

  六、课堂小结。

  这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

  反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

  在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

北师大版五年级数学上册教案3

  教学目的:

  1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

  2、培养学生观察、比较、抽象、慨括的能力。

  3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

  教学难点:质数、台数、济数、偶数的区别

  教学过程:

  课前谈话:

  给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小—的分类方法。明确:分类的际准很重要。

  一、复习旧知

  说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

  给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

  板书对应的集合图。

  自然数

  (能不能被2整除)

  把学生列举的数填写在对应的集合圈里。

  问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

  说明:这是一种有价值的分类方法,在以后的学习中很有用。

  问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

  二、进行新课

  今天我们就用找约数的方法来给自然数分类。

  复习:什么叫约数?怎样找一个数所有的约数?

  同桌合作、找出列举的各数的所有的约数。(同时板演)

  引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

  根据学生的回答板书。

  自然数

  (约数的个数)

  (只有两个约数)(有3个或3个以上的约数)

  引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

  明确合数的概念、提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

  明确:这是一种新的.分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

  猜一猜:奇数有多少个?合数呢?

  明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

  出示例1下面各数,哪些是质数?哪些是合数?

  15  28  31  53  77 89 1ll

  学生独立完成。

  问:你是怎么判断的?

  明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

  说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

  完成练一练。

  三、练习巩固

  1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

  22 29 35 49 51 79  83

  2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

  学生操作后,提问:剩下的都是什么数?

  告诉学生:古代的数学家就是用这样的方法来找质数的。

  四、全课总结

  学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

  讨论:质数、合数、奇数、偶数之间是这样的关系呢?

  五、布置作业(略)。

北师大版五年级数学上册教案4

  一、教学内容

  1、因数和倍数

  2、2、5、3的倍数的特征

  3、质数和合数

  二、教学目标

  1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2、使学生通过自主探索,掌握2、5、3的倍数的特征。

  3、逐步培养学生的数学抽象能力。

  三、编排特点

  1、精简概念,减轻学生记忆负担。

  三方面的调整:

  A、不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  B、不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  C、公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2、注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  四、具体编排

  1、因数和倍数

  因数和倍数的概念

  过去:用÷=表示能被整除,÷=表示能被整除。

  现在:用=直接引出因数和倍数的概念。

  (1)用2×6=12给出因数和倍数的概念。

  (2)用3×4=12进一步巩固上述概念。

  (3)让学生利用因数和倍数的概念自主发现12的其他因数。

  (4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

  (5)说明本单元的研究范围。

  注意以下几点:

  (1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

  (2)因数和倍数是一对相互依存的概念,不能单独存在。

  (3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

  (4)注意区分“倍数”与前面学过的“倍”的联系与区别。

  例1(一个数的因数的求法)

  (1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

  (2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

  一个数的因数的特点

  (1)因数是其自身,最小因数是1。

  (2)因数个数有限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  例2(一个数的倍数的求法)

  (1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

  (2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

  做一做

  与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

  一个数的倍数的特点

  (1)最小倍数是其自身,没有的倍数。

  (2)因数个数无限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  2、2、5、3的倍数的特征

  因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

  2的倍数的特征

  (1)从生活情境“双号”引入。

  (2)观察2的倍数的个位数,总结出2的倍数的特征。

  (3)介绍奇数和偶数的概念。

  (4)可让学生随意找一些数进行验证,但不要求严格的证明。

  5的倍数的特征

  (1)编排方式与2的倍数的`特征类似。

  (2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

  3的倍数的特征

  (1)强调自主探索,让学生经历观察――猜想――—猜想――再观察――再猜想――验证的过程。

  (2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

  (3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

  3、质数和合数

  质数和合数的概念

  (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

  (2)可任出一个数,让学生根据概念判断其为质数还是合数。

  例1(找100以内的质数)

  (1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

  (2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

  五、教学建议

  1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2、要注意培养学生的抽象思维能力。

北师大版五年级数学上册教案5

  教学目标:

  知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

  能力目标:培养学生动手动脑能力,以及解决实际问题的能力。

  情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:

  解决实际问题。

  教学难点:

  用方程方法解答分数除法应用题

  教学过程:

  一、复习巩固,为新知作铺垫

  课件出示:

  1、写出下列各题的数量关系式,判断谁是单位“1”

  (1)故事书的3/5是150本。

  (2 )书的价钱是钢笔价钱的.2/5。

  (3)汽车速度是火车速度的1/2。

  2、复习题:写出数量关系式,找出已知量和未知量。

  操场上有27人参加活动,跳绳的是操场上参加活动总人数的2/9,跳绳的有多少人?

  (1)谁是单位“1”;单位“1”是已知还是未知?

  (2)写出等量关系式。

  (3)找出题中的已知条件和未知条件

  (4)根据题意列式。

  学生独立完成,汇报反馈。

  二、导入新课

  看来同学们都能正确分析和解答分数乘法的实际问题,分数除法的实际问题怎么解答呢?这节课我们就来研究。

  (一)学习新知

  1、出示情景图:从情景图中你能获得哪些信息?

  生简要回答

  2、出示例题:

  跳绳的有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  3、讨论:(1)谁为单位“1”?是已知还是未知?

  (2)根据那句话得到的信息?

  (3)你能列出等量关系是吗?

  半数:参加活动总人数—2/9=跳绳的人数

  (未知) (已知)

  4、你们有什么办法利用以前的知识解答这道题?

  同桌互相说说,在练习本上做一做。

  生反馈,师板书。

  学生口头检验对错。

  5、对比复习题和例1,这两道题有什么相同点,不同点?

  (二)巩固新知

  看情景图,你还能提出问题吗?

  (1)生提问题,全班解答。

  (2)同桌互相提问题,写出等量关系式,列式解答。

  (三)练习、巩固

  打开书,29页,试一试1,自己独立完成。

  集体订正

  三、拓展延伸

  回过头来看例题,你还能用其他的方法解答吗?

  (用除法计算)

  四、总结

  这节课你有什么收获?

  【板书设计】

【五年级数学上册教案】相关文章:

五年级数学上册教案02-07

五年级上册数学教案01-08

五年级上册数学教案[必备]12-27

青岛五年级数学上册教案11-06

五年级上册数学教案15篇01-13

五年级上册数学教案(15篇)01-13

北师版数学书五年级上册教案模板01-04

初二数学上册教案11-22

五年级上册数学教案通用15篇03-26

五年级上册数学教案[集锦15篇]11-11