三角形内角和教案

时间:2023-12-12 14:03:17 教案 我要投稿

三角形内角和教案

  作为一名辛苦耕耘的教育工作者,时常需要用到教案,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?以下是小编为大家收集的三角形内角和教案,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和教案

三角形内角和教案1

  教学目标

  通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

  教学重难点

  三角形的内角和

  课前准备

  电脑课件、学具卡片

  教学活动

  一、计算三角尺三个内角的和。

  出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

  引导学生说出90度、60度、30度。

  出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

  提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

  学生计算后指名回答。

  师:三角尺三个角的和是180度。

  二、自主探索,解决问题

  提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

  任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

  学生小组活动,教师了解学生情况,个别同学加以辅导。

  全班交流:让学生分别说出三个角的度数以及它们的和。

  提问:你发现了什么?

  :任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

  三、试一试

  要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

  教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

  计算的`结果为准。

  四、巩固提高

  完成想想做做的题目。

  第1题

  学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

  第2题

  指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

  第3题

  通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

  第4、5、6

  引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

三角形内角和教案2

  教学内容

  人教版小学数学第八册第五单元第85页例5

  任务分析

  教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

  学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

  教学目标

  1、通过实验、操作、推理归纳出三角形内角和是180°。

  2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

  3、通过拼摆,感受数学的转化思想。

  教学重点

  探究发现和验证“三角形的内角和180度”。

  教学难点

  验证三角形的内角和是180度。

  教学准备

  多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

  教学过程

  一、复习旧知,学习铺垫

  1、一个平角是多少度?等于几个直角?

  2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解规律

  1、说明三角形的三个内角和

  说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

  师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

  板书课题:“三角形的内角和”。

  揭示课题:今天我们一起来探究三角形的内角和有什么规律。

  2、探究三角形的内角和规律

  探究1:量一量,算一算

  以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

  生讨论汇报,并引导学生发现:三角形的内角和接近180°。

  师:三角形的.内角和接近180°,那它到底与180° 有怎样的关系呢?

  学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

  探究2:摆一摆,拼一拼

  引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

  生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

  如图:

  (1)

  锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

  (2)

  让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

  (3)

  让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

  引导学生归纳:三角形的内角和是180°。

  是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

  板书:三角形的内角和是180°

  三、巩固练习,应用规律

  1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

  学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

  学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

  (180°-80°)÷2

  =100°÷2

  =50°

  四、拓展练习,深化规律

  1、求出下面各角的度数。

  (1) (2)

  2、判断

  (1)三角形任意两个内角的和大于第三个角。( )

  (2)锐角三角形任意两个内角的和大于直角。( )

  (3)有一个角是60°的等腰三角形不一定是等边三角形。( )

  3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

  ( ) ( )

  五、课堂小结,分享提升

  1、谈谈这节课你有什么收获?

  2、课后思考题

  三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

  板书设计

三角形内角和教案3

  教学目标

  知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。

  过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。

  情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。

  重点难点

  教学重点:

  探究发现三角形的内角和是180度。

  教学难点:

  在猜想和验证三角形内角和的过程中发展空间观念。

  教学过程

 活动1【导入】理解内角、内角和概念

  1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?

  Q:结合谜面的信息来说一说三角形有什么特点?

  2、介绍内角:这三个角都在三角形的里面,又叫内角。

  Q:三角形有几个内角?

  3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。

  引出课题:今天我们就来研究三角形内角和。

  活动2【活动】观察图形

  1、观察图形的变与不变

  ppt依次出示

  Q:这是锐角三角形,什么是它的内角和?

  出示直角三角形,它的内角和是指?

  出示钝角三角形,内角和是指?

  质疑:哪个三角形的内角和最大?

  预设1:钝角三角形内角和大。(说想法)

  预设2:一样大。(说想法)

  预设3:180度。

  小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。

  (二)活动二:猜想内角和不变的度数

  Q:这个一样的度数是多少?你是怎么知道的?

  预设1:听说过,学过。

  预设2:直角三角尺上三个角的度数和是180度。

  预设3:等边三角形。

  这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。

活动3【活动】测量验证

  (一)思考量的方法和原因

  过渡:你想怎么研究?(用量角器去量)

  Q:谁来介绍介绍量的方法?

  预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。

  (二)动手测量

  PPT:操作建议:

  1、请你找到三角形的三个内角,用彩笔标序号1、2、3。

  2、用量角器仔细测量后,记录角的度数。

  3、列式计算出三角形内角和度数。

  动手测量

  (三)汇报交流:

  学生1展示测量的过程。

  Q:还有谁测量的这个锐角三角形,说一说?

  追问:为什么同一个三角形内角和度数却不一样?

  Q:你在测量的过程中遇到了什么困难?

  Q:观察这些数据,虽然都不太一样,但是都很接近?

  小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。

活动4【活动】拼角验证

  (一)思考其它验证方法

  Q:你还有其他的方法吗?

  预设1:学生没有反应。

  师引导:说到180度,你想到什么角?(平角)

  预设2:撕拼法

  Q:怎么把三个内角拼在一起?

  (生不撕,教师帮助突破,撕下三个内角。)

  Q:你能在投影上拼一拼吗?

  预设3:折叠法

  你的方法也很好,你们听懂了吗?一会儿可以试试。

  预设4:描画法

  Q:怎么描?你能演示一下吗?

  其他同学观察他在做什么?

  引语:刚才说的方法都很好,下面我们自己来试一试。

  (二)动手拼一拼

  操作要求:

  1、请你用彩笔在纸上随意画一个三角形,并剪下来。

  2、用彩笔标出三个内角。

  3、尝试操作。

  动手操作

  (三)汇报交流

  Q:你是怎么研究的?发现了什么?

  (四)小结

  刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。

活动5【活动】几何画板验证

  引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的`内角和都是180度呢?我们可以借助几何画板来看一看。

  师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。

  观察:老师拉动一个顶点,什么变了?什么没变?

  小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。

  活动6【练习】基础练习

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一个锐角是40°,求另一个角?

  3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?

  4、拼三角形

  师:两个180°不是360°吗?

  小结:看来,组合以后的图形还要分清楚哪些是内角。

  活动7【练习】拓展练习

  (一)拓展练习

  今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?

  课件演示。

  说说这节课你的收获?

三角形内角和教案4

  【教材内容】

  北京市义务教育课程改革实验教材(北京版)第九册数学

  【教材分析】

  《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

  【学生分析】

  在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  【教学目标】

  1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

  2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

  3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

  【教学重点】

  让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

  【教学难点】

  能利用学到的知识进行合情的推理。

  【教具学具准备】

  课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

  【教学过程】

一、学具三角板,引入新课

  1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

  2、顾名思义一个三角形都有几个角呀?(三个)

  3、认识内角

  (1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

  (2)这个三角形内有几个内角?(三个)这个呢?(三个)

  (设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

  二、动手操作,探索新知

  (一)直角三角形内角和

  ⅰ、特殊直角三角形内角和

  1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。

  2、观察这两个三角形的度数,你有什么发现?

  生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)

  生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

  (课件):(1)90°+60°+30°=180°)

  那么另一个三角板的三个内角的'总度数是多少?

  (生回答,师课件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:这三个内角合起来是180度)

  4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)

  5、这个直角三角形的内角和是多少度?另一个呢?

  6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。

  (师出示一个平角)问:平角是什么样的?

  7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

  ⅱ、一般直角三角形内角和

  1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

  2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

  (1)小组活动

  (2)汇报

  哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

  三角形的种类

  验证方法

  验证结果

  “量一量”的方法:

  板书:有一点误差的度数

  “剪一剪”的方法:

  我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

  现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

  你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

  还有其他方法吗?

  “折一折”的方法:

  预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

  学生演示(课件:折的过程)

  ②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

  推理:

  你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

  这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

  3、小结

  (1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

  (2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)

  (设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)

  (二)、锐角三角形、钝角三角形的内角和

  1、请你们任意画一个钝角三角形,一个锐角三角形

  2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?

  3、学生模仿老师操作说理

  4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

  师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。

  (设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)

三、巩固新知,拓展应用

  我们就用三角形的这一特性来解决一些问题

  1、两个三角形拼成大三角形

  (1)每个三角形的内角和都是少度?

  (2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢?

  2、一个三角形去掉一部分

  (1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

  再剪去一个三角形呢?(课件演示)

  你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

  (2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)

  你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

  (3)如果五边形,你还能求出他的度数吗?

  (设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)

  四、总结评价、延伸知识

  通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

  师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

  (设计意图:帮助学生梳理本节课的知识脉络。)

三角形内角和教案5

  【教学内容】

  《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》

  【教学目标】

  1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

  2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

  3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

一、激趣导入,提炼学习方法

  1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3、选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4、导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

  二、动手操作,探索交流新知

  1、分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2、多方互动,交流新知

  师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的.。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3、思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

  四、走进生活,提升运用能力

  1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

  2、给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形内角和教案6

  设计说明

  在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。

  课前准备

  教师准备 多媒体课件

  学生准备 三角板

  教学过程

  ⊙复习导入

  师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)

  师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)

  师:这四个角一共是多少度?(360°)

  师:你是怎么算的?(90°×4=360°)

  师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。

  师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)

  设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。

  ⊙探究新知

  1.探究特殊三角形的内角和。

  师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的`三角形)

  师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)

  明确:把三角形三个内角的度数合起来就叫做三角形的内角和。

  师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)

  师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)

  2.探究一般三角形的内角和。

  (1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)

  (2)操作、验证一般三角形的内角和是180°。

  师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?

  ①小组合作,探究验证方法。

  师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。

  ②交流汇报。

  预设

  组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。

  组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。

  ③动手操作,验证猜想。

  师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)

  师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。

  3.得出结论。

  师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)

  设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。

三角形内角和教案7

  【教材内容】

  北京市义务教育课程改革实验教材(北京版)第九册数学

  【教材分析】

  《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

  【学生分析】

  在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  【教学目标】

  1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

  2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

  3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

  【教学重点】

  让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

  【教学难点】

  能利用学到的知识进行合情的推理。

  【教具学具准备】

  课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

  【教学过程】

 一、学具三角板,引入新课

  1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

  2、顾名思义一个三角形都有几个角呀?(三个)

  3、认识内角

  (1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

  (2)这个三角形内有几个内角?(三个)这个呢?(三个)

  (设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

  二、动手操作,探索新知

  (一)直角三角形内角和

  ⅰ、特殊直角三角形内角和

  1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。

  2、观察这两个三角形的.度数,你有什么发现?

  生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)

  生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

  (课件):(1)90°+60°+30°=180°)

  那么另一个三角板的三个内角的总度数是多少?

  (生回答,师课件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:这三个内角合起来是180度)

  4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)

  5、这个直角三角形的内角和是多少度?另一个呢?

  6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。

  (师出示一个平角)问:平角是什么样的?

  7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

  ⅱ、一般直角三角形内角和

  1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

  2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

  (1)小组活动(2)汇报

  哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

  三角形的种类

  验证方法

  验证结果

  “量一量”的方法:

  板书:有一点误差的度数

  “剪一剪”的方法:

  我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

  现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

  你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

  还有其他方法吗?

  “折一折”的方法:

  预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

  学生演示(课件:折的过程)

  ②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

  推理:

  你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

  这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

  3、小结

  (1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

  (2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)

  (设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)

  (二)、锐角三角形、钝角三角形的内角和

  1、请你们任意画一个钝角三角形,一个锐角三角形

  2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?

  3、学生模仿老师操作说理

  4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

  师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。

  (设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)

 三、巩固新知,拓展应用

  我们就用三角形的这一特性来解决一些问题

  1、两个三角形拼成大三角形

  (1)每个三角形的内角和都是少度?

  (2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢

  2、一个三角形去掉一部分

  (1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

  再剪去一个三角形呢?(课件演示)

  你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

  (2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)

  你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

  (3)如果五边形,你还能求出他的度数吗?

  (设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)

  四、总结评价、延伸知识

  通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

  师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

  (设计意图:帮助学生梳理本节课的知识脉络。)

三角形内角和教案8

  教学要求

  1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

  2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  3.培养学生动手动脑及分析推理能力。

  教学重点 三角形的内角和是180°的规律。

  教学难点 使学生理解三角形的内角和是180°这一规律。

  教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

  教学过程:

  一、复习准备

  1.三角形按角的不同可以分成哪几类?

  2.一个平角是多少度?1个平角等于几个直角?

  3.如图,已知∠1=35°,∠2=75°,求∠3的度数。

  二、教学新课

  1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

  2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

  3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

  4.指名学生汇报各组度量和计算的.结果。你有什么发现?

  5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

  6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

  提示学生,可以把三个内角拼成一个角,就只需测量一次了。

  7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

  8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

  9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

  10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。

  12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

  13.出示教材85页做一做。让学生试做。

  14.指名汇报怎样列式计算的。两种方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°(140°+25°)=15°

  三、巩固练习

  1.88页第9题

  这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。

  直角三角形中的一个锐角还可以怎样算?

  2、88页第10题

  ①等腰三角形有什么特点?(两底角相等)

  ②列式计算 180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88页第10题

  ①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

  ②一个三角形的内角和是180°,两个三角形呢?

  四、布置作业

三角形内角和教案9

  【教学目标】

  1、知识与技能:

  (1)理解和掌握三角形的内角和是180°。

  (2)运用三角形的内角和知识解决实际问题和拓展性问题。

  2、过程与方法:

  (1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  (2)知道三角形两个角的度数,能求出第三个角的度数。

  (3)发展学生动手操作、观察比较和抽象概括的能力。

  3、情感态度与价值观:

  让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。

  【教学重、难点】

  教学重点:理解掌握三角形的内角和是180°。

  教学难点:运用三角形的内角和知识解决实际问题。

  【教具准备】

  教学课件、各种三角形

  【教学过程】

一、创设情景,引出问题

  1、猜谜语:

  形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一图形名称)

  2、猜三角形

  师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?

  3、引出课题。

  师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)

  二、探究新知

  1、三角形的内角和

  师:三角形内角和指的是什么?

  2、猜一猜。

  师:这个三角形的内角和是多少度?

  3、验证。

  让学生用自己喜欢的方式验证三角形的内角和是不是180°。

  4、学生汇报。

  (1)测量

  师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?

  (2)剪拼

  A、学生上台演示。

  B、请大家三人小组合作,用剪拼的方法验证其它三角形。

  C、师演示。

  (3)折拼

  师:有没有别的验证方法?我在电脑里收索到折的'方法,请同学们看一看他是怎么折的(课件演示)。

  (4)结论:三角形的内角和是180。

  (5)数学小知识。

  5、巩固知识。

  (1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?

  (2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。

  教师:为什么不是360°?

 三、解决相关问题

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  1、看图,求未知角的度数。

  2、判断。

  3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

  求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。

  (3)我有一个锐角是40°。

  4、求四边形、五边形内角和。

四、总结。

  师:这节课你有什么收获?

  五、板书(略)

三角形内角和教案10

  一、教学目标:

  1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

  2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

  3、在探索和发现三角形内角和的过程中获得成功的体验。

  二、教学重、难点:

  重点:探索并发现三角形内角和等于180°。

  难点:运用三角形内角和等于180°的性质解决一些实际问题。

  教具:课件、三角形若干。

  学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

  三、教学过程

  (一)创设情境,导入新课

  我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

  教师放课件。

  课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

  都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

  (板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、探究三角形内角和的特点。

  (1)检查作业,并提出要求:

  昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

  小组活动记录表

  小组成员的姓名

  三角形的`形状

  每个内角的度数

  三角形内角的和

  (要求:填完表后,请小组成员仔细观察你发现了什么?)

  ②小组合作。

  会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

  各组长进行汇报。发现了三角形的内角和都是180°左右。

  师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

  2、验证推测。

  那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

  通过我们的验证我们可以得出三角形的内角和是180°。

  板书:(三角形内角和等于180°。)

  3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

  出示书28页,试一试第3题,并讲解。

  说明:在直角三角形中一个锐角等于30°,求另一个锐角。

  生独立做,再订正格式、以及强调不要忘记写度。

  小结:同学们有没有不明白的地方?如果没有我们来做练习。

  (三)巩固练习,拓展应用

  1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

  完成,并填在书上。讲一讲直角三角形还有什么解法。

  2、出示29页第2题。

  说明:一个钝角三角形说:我的两个锐角之和大于90°。

  一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

  3、画一画:

  出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

  三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

  (四)课堂总结

  让学生说说在这节课上的收获!

三角形内角和教案11

  一、教材分析:

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180度。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  二、学生状况分析:

  学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

  三、学习目标:

  1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  2.知道三角形两个角的度数,能求出第三个角的度数。

  3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

  4.能应用三角形内角和的性质解决一些简单的问题。

  四、教具、学具准备:

  课件、6张三角形的纸、学生准备任意三角形。

  五、教学过程:

  (一)设疑导入(2分钟)

  师:在平的数学学习中,我们经常会使用一种工具——三角尺。(课件出示两个三角尺)每个三角尺里都有三个角,我们把它叫内角。(板书内角)为了方便老师分别给两个三角尺的内角编上号,谁能告诉我它们分别是多少度?

  师:请同学们仔细观察比较一下,这两个三角形有什么共同之处?

  生:它们的内角和都是180°。

  师:你是怎么得出180°的?

  生:30°+60°+90°=180°

  师:那第二个呢?

  生:45°+45°+90°=180°

  师:同学们,通过刚才的算一算,我们得到这两个直角三角形的内角和都是180°,由此你想到什么呢?(这两个直角三角形的内角和都是180°,那其他的三角形呢?)

  生A:其他三角形的内角和也是180°

  (二)动手操作,探究问题,以动启思(20分钟)

  1、师:这只是我们的一种猜测,三角形的内角和是否真的等于180°,还需要我们去验证。接下来,我们就来验证三角形的内角和,老师为大家准备了1号——6号6个三角形,下面请每个同学选择一个三角形来验证。想一想,你准备用什么样的方法来验证三角形的内角和,然后开始验证。

  (1)小组合作,讨论验证方法

  (2)汇报验证方法、结果

  现在我们一起交流一下验证的结果,交流的时候,你先介绍一下验证的是几号三角形,然后说一说是什么三角形,最后说一说内角和是多少。

  师:同学们我、其实刚才我在验证的时候很多同学有的还是量一量的方法,从刚才过程中来看量一量的方法还是有误差,所以老师建议大家可以是有更加准确、简便的方法来验证。

  师:好,请同学们观察大屏幕,这些三角形的内角和都是180°,那么请问,现在我们能不能以下结论:所以的三角形的内角和都是180°呢?

  生:可以

  师:难道你们都没有怀疑这是老师故意安排好的呢?(没有)那我告诉你们这就是老师故意安排好的,或许也是一种巧合。我们在科学研究的道路上就要敢于质疑的精神,接下来我们怎么办?(我们应该在找一些三角形验证)这个建议非常好,找一些任意三角形这样才有说服力。

  师:每个同学都准备的三角形带了吗?下面就请同学来验证你们自己带来的三角形的'内角和究竟是多少度。学生汇报交流。

  同学们我们这样验证,验证完吗?(验证不完)

  师:刚才我们通过算一算、拼一拼、折一折的方法,不管是老师提供的三角形还是你们自己准备的三角形这些直角、锐角、钝角三角形的内角和都是180°,那么我们可以概括成什么呢?

  生:我们发现每个三角形的三个内角和都是180°。

  课件出示结论:三角形的内角和是180°)。

  师:看来我们的猜测是正确的,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。(板书:三角形的内角和是1800

  (四)巩固练习:(15分钟)

  学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?

  师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90 °,有的180 °。)

  师:哪个对?为什么?

  生:180°,因为它还是一个三角形。

  师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?这时学生的答案又出现了180°和360°两种。

  师:究竟谁对呢?大家可以在小组内拼一拼,进行讨论

  生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

  生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

  师:三角形不论位置、大小、形状如何,它的内角和总是180°

  1、三角形ABC是等腰三角形,角A是顶角等于50度,角B=?角C=?

  教师引导学生复习等腰三角形的特征,再让学生谈谈想法。

  教师汇总解法:

  180度-50度=130度130度÷2度=65度

  知识拓展:三角形ABC是等腰三角形,角B是底角等于50度,顶角角A=?(学生自主完成汇报结果)教师汇总解法:

  50度×2=100度180度-100度=80度

  2、一个直角三角形,一个锐角为35度,求另一个锐角的度数。

  教师带领学生复习直角三角形的特征。(指名汇报)解法不唯一,只要学生思路正确老师应及时给与肯定。教师汇总解法:

  (1)180度-90度=90度90度-35度=55度

  (2)180度-35度=145度145度-90度=55度

  (3)90度+35度=125度180度-125度=55度

  (4)90度-35度=55度

  3、下面的说法对吗?

  1)钝角三角形的两个锐角之和大于90度。()

  2)大三角形的内角和比小三角形的内角和大。()

  3)一个直角三角形中最多有一个直角。()

  学生自主理解题意,教师引导学生说出对或错的原因。

  4、老师这还有一个难题需要解决,同学们愿意接受挑战吗?

  师:老师手里有一个信封,信封里露出一来个角,这个角的度数是45度,请同学们判断一下,隐藏在信封里的三角形是什么三角形?

  师:信封里还露出一来个角,这个角的度数是45度,它是这个三角形内角中最小的锐角,请同学们判断一下,隐藏在信封里的三角形是什么三角形?

  5、想一想,下面图形的内角和分别是多少?

  学生小组讨论如何分割,教师巡视并参与讨论,讨论完后小组汇报,指名板演。

  (五)课堂小结

  师:一节课快要结束了,那么我们回想一下这节课你有什么收获,什么感想?

三角形内角和教案12

  教学内容:

  p.28、29

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的`方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

三角形内角和教案13

  教材分析

  教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

  三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

  学情分析

  学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。

  要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

  教学目标

  1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  教学重点和难点

  教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

  教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

  教学过程:

  (一)、激趣导入:

  1、认识三角形内角

  我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  (三角形是由三条线段围成的图形,三角形有三个角,…。)

  请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角

  形的内角。(这里,有必要向学生直观介绍“内角”。)

  2、设疑激趣

  现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)

  同学们,请你们给评评理:是这样吗?

  现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

  这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  师拿出两个三角板,问:它们是什么三角形?

  (直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)

  从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。

  这两个三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形内角和

  (1).猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2).操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  (可以先量出每个内角的.度数,再加起来。)

  测量计算,是吗?那就请四人小组共同计算吧!

  老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

  (3)小组汇报结果。

  请各小组汇报探究结果

  提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  3继续探究

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

  (先小组讨论,再汇报方法)

  大家的办法都很好,请你们小组合作,动手操作。

  (2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)

  这两道题都有两种答案,到底哪个对?为什么?

  (学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

  (2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到最佳方法。

  学生汇报,在图中画上虚线,教师课件演示。

  请同学们自己在练习本上计算。

  (四)、课堂总结

  通过这节课的学习,你有哪些收获?

三角形内角和教案14

  【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

  【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

  【学情分析】:

  学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

  【学习目标

  1、结合具体图形能描述出三角形的内角、内角和的含义。

  2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

  3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  【评价任务设计

  1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

  2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

  3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

  【重难点

  教学重点:探索和发现三角形的内角和是180°。

  教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

  【教学过程】

  一、复习准备。

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

  二、探究新知

  (一)创设情境,生成问题,认识三角形的内角及内角和

  (播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的'内角和是180°,我们的内角和是一样大的。”

  师:动画片看完了,请大家想一想,什么是三角形的内角和?

  师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

  多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

  (达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫

  (二)、引导猜测三角形的内角和是180度

  师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

  预设:学生回答直角三角形。

  师:你为什么这么认为呢?

  生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

  (达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

  (三)、验证三角形的内角和是180度

  1.确定研究范围

  师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

  师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

  2.操作验证

  教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

  智慧锦囊:

  (1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

  (2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

  3.汇报交流

  师:谁来汇报你的验证结果?

  (1)测算法

  师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

  (2)剪拼法

  (3)折拼法

  师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

  (4)推算法

  ①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

  师直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

  课件演示

  ②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

  4.总结提炼

  师:孩子们,刚才我们通过“量——————推”的方法分类验证了三角形的内角和是( )度?

  现在可以下结论了吗?

  (板书:三角形三个内角和等于180°。)

  师:那在“三角形的争吵中”谁是对的?

  (达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)

  (四)利用三角形内角和是180解决问题

  1、看图,求出未知角的度数。

  2、书本85页“做一做”

  在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

  (达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)

  三、目标达成检测方案:

  1、求出三角形各个角的度数。

  2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

  四、课堂小结,提升认识

  同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

  师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

三角形内角和教案15

  【教学目标】

  1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证"三角形的内角和为180度"的规律。

  【教学难点】

  理解并掌握三角形的内角和是180度。

  【教具准备】

  PPT课件、三角尺、各类三角形、长方形、正方形。

  【学生准备】

  各类三角形、长方形、正方形、量角器、剪刀等。

  【教学过程】

  口算训练(出示口算题)

  训练学生口算的速度与正确率。

  一、谜语导入

  (出示谜语)

  请画出你猜到的图形。谁来公布谜底?

  同桌互相看一看,你们画出的三角形一样吗?

  谁来说说,你画出的是什么三角形?(学生汇报)

  (1)锐角三角形,(锐角三角形中有几个锐角?)

  (2)直角三角形,(直角三角形中可以有两个直角吗?)

  (3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

  看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

  看到这个课题,你有什么疑问吗?

  (1)什么是内角?有没有同学知道?

  内:里面,三角形里面的角。

  三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.

  (2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

  (3)大胆猜测一下,三角形的内角和是多少度呢?

  【设计意图】

  创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

  二、探究新知

  有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

  1、确定研究范围

  先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

  只研究你画出的那一个三角形,行吗?

  那就随便画,挨个研究吧?(太麻烦了)

  怎么办?请你想个办法吧。

  分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

  2、探究三角形的内角和

  思考一下:你准备用什么方法探究三角形的内角和呢?

  小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

  小组汇报:

  (1)量一量:把三角形三个内角的度数相加。

  直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

  (2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

  能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

  (3)折一折:把三角形的三个角折下来,拼成了一个平角。

  这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

  总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

  3、演绎推理的方法。

  正方形四个角都是直角,正方形内角和是多少度?

  你能借助正方形创造出三角形吗?(对角折)

  把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

  再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

  这种方法避免了在剪拼过程中操作出现的误差,

  举例验证,你发现了什么?

  通过验证,知道了直角三角形的内角和是180度。

  你能把锐角三角形变成直角三角形吗?

  把锐角三角形沿高对折,分成了两个直角三角形。

  一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

  通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

  通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

  钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

  通过验证,你又发现了什么?(钝角三角形内角和180°)

  4、总结

  通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

  5、想一想,下面三角形的内角和是多少度?(小--大)

  你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

  【设计意图】

  为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

  三、自主练习

  1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

  2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

  3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

  师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

  4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

  【设计意图】

  练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

  四、课堂总结

  同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

  真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的`内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

  课后反思

  《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".

  本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".

  为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

  教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

  1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

  2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

  3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

  教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

【三角形内角和教案】相关文章:

《三角形的内角和》教案04-17

三角形的内角和教案11-27

三角形内角和教案8篇05-14

《三角形内角和》数学教案03-07

三角形的内角和说课稿03-04

《三角形的内角和》反思02-28

《三角形的内角和》的说课稿02-21

《三角形内角和》说课稿04-14

《三角形内角和》说课稿11-27