二次根式教案

时间:2023-11-21 09:17:15 教案 我要投稿

二次根式教案3篇(推荐)

  作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?下面是小编精心整理的二次根式教案,希望对大家有所帮助。

二次根式教案3篇(推荐)

二次根式教案1

  课题:二次根式

  教学目标1、知识与技能

  理解a(a≥0)是一个非负数,(a≥0)

  2、过程与方法

  (1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

  方法

  (2)问题解决:能够利用性质进行二次根式的化简计算,能够互助

  交流合作,分析问题,总结反思

  3、情感、态度与价值观

  体验成功的乐趣,锻炼克服困难的意志,培养严谨

  求实的'科学态度

  教学重难点教学重点:二次根式的概念

  教学难点:二次根式中根号下必须为非负数

  教学过程

  一、课前回顾

  (2分钟)

  学生与老师共同回顾上节课所学内容,温故而知新。什么是二次根式?

  二次根式中字母的取值范围:

  ①被开方数大于等于零;

  ②分母中有字母时,要保证分母不为零。

  ③多个条件组合时,应用不等式组求解

  一、情境引入(3分钟)

  由生活中的'实例引入投影的概念,引起学生的学习兴趣

  已知下列各正方形的面积,求其边长。

  二、探究1(10分钟)

  练习1:

  计算下列各式:

  三、探究2(10分钟)

  可以发现它们有如下规律:

  一般的,二次根式有下列性质:

  练习2:

  典型例题例1:计算:

  例2:计算:

  达标测试(5分钟)

  课堂测试,检验学习结果

  1、判断题

  2、若,则x的取值范围为(A)

  (A)x≤1(B)x≥1

  (C)0≤x≤1(D)一切有理数

  3、计算

  4、化简

  5、已知a,b,c为△ABC的三边长,化简:

  这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

  应用提高(5分钟)

  能力提升,学有余力的同学可以仔细研究如图,P是直角坐标系中一点。

  (1)用二次根式表示点P到原点O的距离;

  (2)如果求点P到原点O的距离

  体验收获今天我们学习了哪些知识

  二次根式的两条性质。

  布置作业教材8页习题第3、4题。

二次根式教案2

  一、案例背景:

  本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。

  二、案例描述:

  1、学习任务分析:

  通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的'学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。

  2、学生的认知起点分析:

  学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。

  案例反思:

  1.下列代数式若能作为二次根式的被开方数,则求出字母的取值范围?若不能,则说明理由。1-2a-2a2-1(2+a)2-(a-5)2

  以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。

  2.合作活动:

  第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;

  第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;

  第三位同学——批改者:请你用蓝笔批改,若有错误,请与解题者商议并请其订正,完成交给你信任的同学用红笔复;

  第四位同学——复查者:请你一定要把好关哦!

  出题者姓名:

  解题者姓名:

  第一个二次根式:

  1.要使式子的值为实数,求x的取值范围.

  2.写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3.写出x的一个值,使式子的值为无理数,并求出这个无理数。

  第二个二次根式:

  1.要使式子的值为实数,求x的取值范围。

  2.写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3.写出x的一个值,使式子的值为无理数,并求出这个无理数。

  批改者姓名:

  复查者姓名:

  《课程标准》突出了学生在学习中的地位--学生是学习的主人,同时,教师的地位、角色发生了变化,从“主导”变成了“学生学习活动的组织者、引导者和合作者”。合作活动的安排就是对这一课程标准的体现。

二次根式教案3

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的'公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的'因数或因式。

  四、课堂练习:

  (一).P62练习1、2

  注意:

  不是积的形式,要因数分解为36×16=242.

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

【二次根式教案】相关文章:

二次根式教案02-15

《二次根式的运算》的教案09-07

二次根式教案(精选10篇)06-16

【精选】二次根式教案4篇07-02

二次根式教案九篇02-06

二次根式说课稿04-29

关于二次根式教案10篇10-30

二次根式教案汇编9篇10-31

二次根式教案汇编8篇10-15

关于二次根式教案8篇10-18