数的整除教案

时间:2023-11-18 07:03:12 教案 我要投稿
  • 相关推荐

数的整除教案

  作为一名为他人授业解惑的教育工作者,时常需要用到教案,教案是备课向课堂教学转化的关节点。那么优秀的教案是什么样的呢?以下是小编帮大家整理的数的整除教案,仅供参考,希望能够帮助到大家。

数的整除教案

数的整除教案1

  教学目标

  (一)掌握能被2,5整除的数的特征。

  (二)理解并掌握奇数和偶数的概念。

  (三)能运用这些特征进行判断。

  (四)培养学生的概括能力。

  教学重点和难点

  (一)能被2,5整除的数的特征。

  (二)奇数和偶数的概念,0也是偶数。

  教学用具

  投影片。

  教学过程

  (一)复习准备

  1.提问。

  ①说出20的全部约数。

  ②说出5个8的倍数。

  ③26的最小约数是几?最大约数是几?最小的倍数是几?

  2.板书。

  按要求在集合圈里填上数。

  教师:在计算中,经常需要先判断一个数能否被另一个数整除。如果掌握了数的一些特征,就可以帮助我们进行判断。今天我们就学习最常见的,能被2,5整除的数的特征。板书课题。

  (二)学习新课

  1.能被2整除数的特征。

  (1)教师:(指板书练习2)右边集合圈里的数与左边圈里的数是什么关系?

  教师:请观察右边圈里的数、它们的个位数有什么特点?(个位上是0,2,4,6,8。)

  教师:请再举出几个2的倍数,看看符不符合这个特点?

  学生随口举例。

  教师:谁能说一说能被2整除的数的特征?

  学生口答后老师板书:个位上是0,2,4,6,8的数,都能被2整除。

  (2)口答练习(投影片)

  请把下面的数按要求填在圈内:

  1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

  学生口答完后,老师介绍:

  能被2整除的数叫做偶数,不能被2整除的数叫做奇数。(奇读j9)板书,上面两个集合圈上补写出“偶数”,“奇数”。

  教师:上面两个集合圈里该不该打省略号?为什么?

  学生讨论后老师说明:

  在本题所列的有限个数里的奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。

  教师:奇数、偶数在我们日常生活中遇到过吗?习惯上称它们为什么数?(单数、双数。)

  教师板书:0÷2=0。

  问:0算不算偶数?请说一说是怎样想的。

  学生讨论后老师总结:商是0,0是整数,说明0也能被2整除,所以0也算偶数。

  (3)练习:(先分小组小说,再全班统一回答。)

  ①说出5个能被2整除的两位数。

  ②说出3个不能被2整除的三位数。

  ③说出15~35以内的偶数。

  ④50以内的偶数有多少个?奇数有多少个?

  2.能被5整除的数的特征。

  (1)教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究能被2整除的数的特征相同的方法,找出能被5整除的数的特征?

  学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。

  教师:说一说能被5整除的数的特征?

  教师:请举几个多位数验证。

  教师:再说一说什么样的数能被5整除?

  板书:个位上是0或者5的数,都能被5整除。

  (2)练习:

  ①按从小到大的顺序,说出50以内能被5整除的数。

  ②(投影片)下面哪些数能被5整除?

  240,345,431,490,545,543,709,725,815,922,986,990。

  ③(投影片)从下面的数中挑出既能被2整除,又能被5整除的数。这些数有什么特点?12,25,40,80,275,320,694,720,886,3100,3125,3004。

  学生口答后教师板书:

  既能被2整除、又能被5整除的数有:

  40,80,320,720,3100。

  个位数字是0。

  ④教师随口说出数,请立即说出这个数能被2还是能被5整除,或者是既能被2又能被5整除。并说明判断的依据。

  (三)巩固反馈

  (1~4题口答,5题小组讨论后汇报。)

  1.自然数按照能不能被2整除进行分类。

  2.在1~100的自然数中,能被2整除的数有()个,能被5整除的数有()个

  3.比75小,比50大的奇数有()。

  4.个位是()的数能同时被2和5整除。

  5.用0,7,4,5,9五个数字组成能被2整除,能被5整除,能同时被2和5整除的数

  (四)课堂总结和课后作业

  1.什么叫奇数?什么叫偶数?

  2.能被2整除的数的特征?能被5整除的数的'特征?

  3.能同时被2和5整除的数的特征。

  4.作业:课本P55练习十二:1,2,3,4。

  课堂教学设计说明

  本节课是要让学生学习了约数、倍数之后,掌握一些常用数的整除特征。这些知识是今后进一步学习的重要基础。能被2,5整除的数的特征,都在个位数,学生极易理解和掌握。奇数、偶数的概念,学生掌握也并不困难。所以课堂设计中都安排让学生通过练习自己去学习,尤其是能被5整除的数的特征,完全安排学生自学,这样既调动了学生的积极性,又锻炼和培养了学生的归纳概括能力。课堂上还设计了较多的练习,使学生能较熟练地应用数的特征和概念进行判断。

  新课教学分两部分。

  第一部分教学能被5整除数的特征,分三层。引导学生自己归纳出能被2整除的数的特征;掌握奇数,偶数概念;巩固能被2整除数的特征和奇、偶数概念。

  第二部分教学能被2整除数的特征。分两层。学生自学归纳出能被5整除数的特征;巩固能被2,5整除数的特征,并掌握能同时被2,5整除的数的特征。

数的整除教案2

  一、知识目标

  理解并掌握能被 2 、 5 整除的数的特征,数学教案-能被 2 、 5 整除的数。

  二、能力目标

  培养学生的观察能力,提高思维的水平。

  三、德育目标

  培养良好的思维品质和认真细致的作风。

  四、教学重点

  通过学生自己查找数据,掌握能被 2 、 5 整除的数的.特征。

  五、教学难点

  能根据特征熟练地判断一个数是否能被 2 、 5 整除。

  六、教学准备

  资料 多媒体

  七、教学过程

  一)、复习导入。(出示问答题)

  1 、我们学习了一个数的约数和倍数,两个整数,具备什么条件时,才能说一个数能被另一个数整除?

  2 、下面各组数中,谁是谁的倍数,谁是谁的约数?

  10 和 215 和 512 和 314 和 28

  3 、说一说 2 的倍数和 5 的倍数。

  二)、探究新知。

  引入:在计算中,经常要判断一个数能不能被另一个数整除,可以根据数的一些特征来进行判断。

  这些数的特征又是怎样的呢,你想知道吗?跟着老师一起去发现,好吗?(板书课题:能被 2 、 5 整除的数)

  1 、能被 2 整除的数的特征。

  ( 1 )学生自查 1 — 60 数据表中,能被 2 整除的数有那一些,填在自学资料表内。

  ( 2 )自查后,同位讨论:这些数有什么特征吗?

  ( 3 )学生归纳:个位上是 0 、 2 、 4 、 6 、 8 、的数,都能被 2 整除,小学数学教案《数学教案-能被 2 、 5 整除的数》。

  2 、能被 5 整除的数的特征。

  方法与上相同。

  3 、能同时被 2 、 5 整除的数的特征。

  方法与上相同。

  4 、知识归纳:(能被 2 、 5 整除的数的特征)

  5 、自学 54 — 55 面 这些数中还有没有特殊的名称。

  ( 1 ) 集体讨论;自然数中的数还有别的特殊名称?

  ( 2 )汇报讨论结果。

  三)、巩固练习。(另付练习资料)

  1 、尝试练习。

  ( 1 )学生独立完成,教师个别辅导。

  ( 2 )汇报独立完成作业情况。

  2 、说一说,议一议。

  ( 1 )四人一组进行讨论。

  ( 2 )通过讨论,你又知道了一些什么?

  3 、超级练习。

  ( 1 )先独立完成。

  ( 2 )集体讨论:先说结果,再说一说你是怎么做的,又是怎么想的?

  ( 3 )通过讨论后,你还有什么问题要提出来讨论的吗?

  四)课堂小结。

  1 、这节课你又学到了哪些知识?

  2 、学生归纳能被 2 、 5 整除的数。

  板书设计:

  能 被 2 、 5 整 除 的 数

  个位上是 0 、 2 、 4 、 6 、 8 的数

  个位上是 0 或者 5 的数

  个位上是 2 和 5 的数

数的整除教案3

  教学内容:

  数的整除复习(小学数学九年制义务教材第十册)。

  教学目标:

  1.掌握自然数的分类和关系,沟通知识间的联系,形成网络。

  2.理解概念并能正确运用概念。

  3.培养学生分析、判断、抽象概括的能力。

  教学重点:

  区别整除和除尽、互质和质数、分解质因数和求最大公约数、最小公倍数的不同。

  教学方法:

  边总结边练习(讲练结合)。

  教学过程:

  一、揭示课题,确定研究对象——自然数

  师:前面我们学习了数的整除知识(板书:数的整除)

  你知道的数有哪些?我们研究数的`整除时,这里的数是指什么数?(板书:自然数)

  二、研究自然数的分类

  1.提问:自然数可以怎样分类?

  生:按照能否被2整除,可以把自然数分成奇数和偶数;按照约数的个数,可以把自然数分成:1、质数和合数。(板书:奇数  偶数  1  质数  合数)

  2.提问:你能说说什么叫奇数、偶数?什么叫质数、合数?质数和合数有什么关系?

  (板书:分解质因数  质因数)

  3.练习:判断对错

  (1)自然数可以分成质数和合数。                 (    )

  (2)质数都是奇数,合数都是偶数。                (    )

  (3)两个质数的乘积一定是奇数。                 (    )

  (4)把15分解质因数是3×5=15,3和5叫质因数。           (    )

  三、研究自然数的关系

  (一)整除关系

  1.提问:两个自然数之间会存在哪些关系?(板书:整除  互质)

  2.什么叫整除?(引出约数、倍数)(板书:约数  倍数)

  它和除尽有什么区别?(板书:除尽)

  约数、倍数表示的是数吗?(板书:关系)

  公约数、公倍数表示什么?(板书:数)它们各有什么特点?

数的整除教案4

  教学目的:

  1、知识与能力:理解和掌握能被2、5整除的数的特征,会判断一个数能否被2、5整除。了解奇数、偶数的概念

  2、情感与态度:培养分析、综合、抽象、概括的能力。

  教学重点:

  理解和掌握被被2、5整除的数的特征。

  教学难点:

  学会判断一个数能否被2、5整除。

  教学过程:

  一、复习旧知:

  1、自由发言,举出一些整除的算式

  2、(展示)下面哪些数能被2整除?哪些数能否5整除?

  8、9、10、14、15、20、85、60

  二、引入新课。

  师:通过口算笔算,能判断一个数能否被2或5整除,如果一个较大的数,如8660,不用笔算,能很快作出判断吗?请4个同学来考考老师,无论你报出的数多大,只要你一报出数,老师就能判断准确。活动完后,揭秘密。

  三、探索规律。

  1、师写出从1到20的数,要求学生判断哪些数能被2整除,找出这些数的特征。引出偶数概念,判断一个数是否是偶数,只要看个位是否是偶数。

  师几个数,让学生判断能否被2整除,学生出规律。

  2、检验学生能力。

  (1)举例说明什么是奇数、偶数?

  (2)0是奇数还是偶数

  (3)座号是偶数的同学请举手,座号是奇数的同学请举手;

  (4)两次都没有举手的同学请站起来。

  四、自主学习

  1、自学能被5整除的数的.特征

  2、谈谈自学的体会

  3、出示几个数让学生判断能否被5整除,规律。

  五、练习设计。

  第一层次,基本练习。

  第二层次,发展练习。

  (1)判断题:

  ①能同时被2和5整除的数末尾至少有一个0

  ②1是最小后奇数。

  ③一个自然数不是奇数,就是偶数。

  ④在相邻后两个自然数中,偶数比奇数大1

  (2)填空

  ①能被2整除后最大两位数是()

  ②能被5整除后最大三位数是()

  ③107后面连续5个偶数是()

  第三层次,综合练习。

  用0、1、2排出能被2整除后数有(),能被5整除的数有()。

数的整除教案5

  教学内容:教材第60-61页,练一练,练习十一11-18题)

  教学要求:

  1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。

  2、使学生正确掌握分解质因数和求两个数的最大公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的最大公约数,两个或三个数的最小公倍数。

  教学过程:

  一、揭示课题

  1、口算(指名口算课本第64页第11题)

  2、引入新课

  我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求最大公约数最小公倍数。

  二、复习约数和倍数

  1、提问:什么是整除(板书整除)如果A能被B整除,必须具备哪些条件?

  当A能被B整除,也就是B整除A时,还可以怎样说?板书:

  约数

  倍数

  2、做“练一练”第1题

  学生做在课本上,说明倍数和约数的依存关系。

  3、学生练习

  (1)从小到大写出9的五个倍数

  复习约数倍数相关知识(略)

  (2)写出18的所有约数

  三、复习质数合数

  1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:

  板书:1

  质数

  合数

  怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。

  2、口答:

  (1)说出比10小的质数和合数。

  (2)最小的质数和最小的合数各是几?

  (3)下面哪些是质数?哪些是合数?

  785123579190

  3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的.什么数?(板书:质因数,分解质因数)

  4、做“练一练”第3题

  练后指名口答,集体订正。

  四、复习公约数和公倍数。

  1、学生练习

  (1)写出18和24所有的公约数,指出最大公约数。

  (2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。

  学生口答,老师板书

  提问:什么叫做公约数和最大公约数?什么叫做公倍数和最小公倍数?

  (板书——公约数、最大公约数——公倍数——最小公倍数)

  2、“练一练”第4题

  集体练习,指名口答,说一说方法怎样归纳三种关系?

  追问:用短除法求最大公约数和最小公倍数有什么相同和不同?

  五、复习

  能被2、5、3整除各有什么特征

  1、提问:能被2、5、3整除各有什么特征。

  (板书:——能被2、5、3整除的数)

  2、“练一练”第5题

  提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,

  板书:偶数

  奇数

  想一想,自然数可以分为哪几类?

  六、课堂

  根据板书内容,说说相互之间有什么联系。

  七、课堂练习

  1、练习十一和12题

  2、课堂作业

  (练习十一第15、16题、17题中(3)(4)

  八、课外作业:练习十一第18题。

数的整除教案6

  教学目标

  1、使学生理解自然数与整数的意义。

  2、使学生掌握整除、约数与倍数的概念。

  3、培养学生抽象概括与观察物的能力。

  教学过程

  一、建议自然数与整数的概念

  1、谈话引入:今天这节课,我们学习数的整除。(板书课题)

  2、教师提问:既然是数的整除,自然就与数有关,同学们都学过什么数?

  (教师板书:整数、小数、分数)

  同学们会数数吧?(学生数数)

  (教师板书:1、2、3、4、5、)

  继续数下去,能数到头吗?

  数不到头,我们可以用一个什么标点符号来表示呢?

  (教师板书:“……”)

  3、教师小结:

  用来表示物体个数的1、2、3、4、5等等,叫做自然数。(板书:自然数)

  提问:最小的自然数是几?有最大的自然数吗?

  当一个物体也没有时,我们用几来表示?(板书:0)

  二、建立整除的概念

  1、教师明确:数的整除,不仅与数有关,还与除有关,一说到除,在家就会想到两个数相除,那么整除又是什么意思呢?整除也是两个数相除,但是在小学阶段,我们研究整除不包括“0”。

  2、出示卡片 1.2÷4

  提问:在数的整除中研究这样的两个数相除吗?为什么?

  3、再出示卡片:10÷20,16÷5,15÷3,36÷9,24÷2

  提问:这几个式子中的被除数和除数都是什么数?

  教师明确:被除数和除数都是自然数,这是我们研究数的整除的一个非常重要的条件。

  4、教师说明:被除数和除数都是自然数,如:10÷20,我们能不能说10能被20整除呢?还不能,还要看它的商。

  组织学生口算出5张卡片的商。(其中16÷5指定回答“商几余几”)

  提问:被除数和除数都是自然数,商可能有哪几种情况?

  排除没有整除关系的卡片,指15÷3=5一类的卡片,说明:只有这样的,我们才能说15能被3整除。

  5、学生举例

  6、提问:用字母a表示这样的被除数,用b表示这样的除数,商怎么样,我们就说a能被b整除呢?

  这样看来,整除除了被除数和除数都是自然数外,还得有一个什么条件?

  教师明确:商是自然数,没有余数是整除的又一个重要的条件。

  7、出示卡片(区别整除和除尽)

  4÷3=1.3 18÷18=1 7÷5=1.4

  4÷0.2=20 42÷6=7

  三、建立约数与倍数的概念

  1、教师说明:当数a能被数b整除时,a就是b的倍数;b就是a的约数。

  2、联想训练:教师说一句由学生说出另外两句。

  如:教师:15能被3整除(生:15是3的'倍数,3是15的约数)

  教师:36是9的倍数(生:36能被9整除,9是36的约)

  教师:2是24的约数 (生:24能被2整除, 24是2的倍数)

  教师:7不能被4整除(生:7不是4的倍数,4又不是7的约数)

  3、区分“倍数”与“几倍”

  教师提问:能说4是0.2的倍数吗?为什么?

  4、判断

  12是3的倍数 ( ) 7是21的约数 ( )

  1是25的约数 ( ) 3.6是3的倍数 ( )

  4是约数 ( ) (说明:通过此题,深化倍数、约数相互依存的关系)

  四、巩固练习

  思考题:1,3,6,9,12这几个数中谁与谁之间有约数和倍数的关系?

  五、课堂小结

  1、数的整除是在自然数范围内讨论的。

  2、两个数之间,一旦具备整除关系,那么这两个数之间必定还具有约数、倍数的关系。所以,整除是前提,倍数、约数是在这个前提下必然产生的一种结果。

  六、布置作业

  1、下面的说法对吗?说出理由。

  (1)因为36÷9=4,所以36是倍数,9是约数。

  (2)57是3的倍数。

  (3)1是1、2、3、4、5,……的约数。

  2、一个数是42的约数,同时又是3的倍数。这个数可以是多少?

  七、板书设计

  数的整除

  整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

  如果数a能被数b(b≠0)整除,a就叫做b的倍数, b就叫做a的约数(或因数)。

  探究活动

  把数分类

  活动目的

  1、使学生掌握奇数、偶数、约数、倍数的交叉关系和区别。

  2、帮助学生建立完整的知识结构。

  活动题目

  桌上有20张卡片,在这些卡片上分别写着1,2,3,…19,20这20个数。请将这20个数加以分类。

  活动过程

  1、学生以小组为单位讨论。

  2、汇报讨论结果。

  3、交流收获。

数的整除教案7

  教学目标:

  1、掌握两位数除以一位数(首位不能整除)的竖式计算方法。

  2、体会数学活动充满着探索,树立学好数学的信心。

  教学重点:首位除时有余的情况应如何处理。

  教学难点:十位上余下的数与各位数合起来再除。

  教学对策:创设情景,并让学生在操作中获得直接经验,从而突破难点。

  教学准备:挂图、小黑板等。

  教学过程设计:

  一、复习引新。

  1、出示准备题:把40个羽毛球,平均分给2个班每班能分到多少个?

  2、指名列式计算。说一说口算和竖式计算方法。

  二、新授例题。

  1、把准备题改成例题:把52个羽毛球,平均分给2个班每班能分到多少个?

  2、列式并讨论计算方法。

  (1)借助学具摆一摆。

  A、分法一:体会到先分整筒的,分给每班2筒,余下的一筒要和单个的合起来再分。

  40÷2 = 20 1 2 ÷2 = 6 2 0 + 6 =2 6

  B、分法二:先把5筒平均分成2份,每份2筒,剩下1筒;再把一筒散开,平均分成5只;再把2只平均分成2份,每份是1只;最后得到每份26只。

  (2)引导比较分法,形成统一认识。

  (3)学生复述分的过程。

  (4)用竖式计算。

  2 6

  3) 5 2 十位上的5减4等于1,

  4 这个1实际上是多少?

  1 2

  1 2

  3、验算。

  26 ×2 = 52

  三、巩固练习。

  1、想想做做:第1题

  78÷3 84÷6 92÷2 80÷5

  2、想想做做:第3题

  (1)先让学生自行练习。

  (2)再通过比较,沟通每组两题之间的联系。

  3、想想做做:第5题

  (1)热水瓶的价钱是一幅画的几倍?

  5 6 ÷4 = 1 4

  (2)热水瓶的价钱是茶杯的几倍?

  5 6 ÷2 = 28

  (3)一幅画的价钱是茶杯的几倍?

  4÷2 = 2

  四、课堂作业。

  想想做做:第2、4题

  板书设计:

  两位数除以一位数(首位不能整除的)

  2 6

  2)5 2 十位上的5减4等于1,

  4 这个1实际上是多少?

  1 2

  1 2

  两位数除以一位数(首位不能整除的)

  2 6

  2)5 2 十位上的5减4等于1,

  4 这个1实际上是多少?

  1 2

  1 2

  两位数除以一位数(首位不能整除的)

  2 6

  2)5 2 十位上的5减4等于1,

  4 这个1实际上是多少?

  1 2

  1 2

  课前思考1:

  这部分内容教学首位不能整除的两位数除以一位数的除法,这是两位数除以一位数的计算中相对复杂的一种情况,也是学生本单元学习的难点。在课堂上,这部分内容的处理应当比首位能够整除的两位数除以一位数更为细腻些,在教学时还要提醒学生进行验算,通过验算进一步确认相关的计算方法。

  练习的安排从易到难、逐层深入。第5题是开放题,有利于培养学生发现问题、提出问题的能力,并有利于增进学生对相关数量关系的理解。第6题在学生已经积累了一定计算经验的基础上,要求他们估计两位数除以一位数的商是几十多。

  课前思考2:

  本课正如周老师所说的确实是学生学习本单元的难点。课本的情境很不错,我们可以借助这一情境学生理解首位不能整除,减下的这个数实际代表的是几,并要和剩下的合在一起进行下面的除法计算,在这里一定要让学生自己把分的过程说一说,帮助自己理解其中的算理。

  课后反思1:

  理解十位上余数的意思和十位上有余数后接下去该怎样计算是本课的重点、难点。学生在前两节课的基础上,通过计算、比较,弄清互相之间的不同之处,在比较中突出今天所学的知识,学生能进一步认识十位上除后,如果有余数,应该与十位上的数合在一起继续除,而个位上有余数则不要再除。

  经过本课的'教授和练习后,首位不能整除的两位数除一位数的笔算书写学生基本掌握,但还需要加强练习。估算题可提高学生的判断能力和估算能力,但这一题的设计对学生的思维要求较高。

  课后反思2:

  课前先一题复习题,然后让学生根据自己的生活经验将52个羽毛球平均分成2份,学生将可能出现的分法都想到了,在这基础上,让学生进行方法的择优,这与列竖式笔算建立了密切的联系。然后,通过情境的回顾,即“十位上的5减4等于1,这个1实际上是多少”的问题,学生结合具体的情境,非常清晰地了解了这个1就表示剩下的一筒羽毛球,就是10个,再和散装的2个合起来是12,这样在理解了口算方法后,对于学习笔算有很大的帮助,学生在原有知识的基础上学习新知,又将这一新知的难点处理了,因此,很顺利地学完了笔算方法,当比较抽象地讲解笔算过程时,我将难点结合刚才的具体情景,学生就很明朗,这一笔算方法就这样比较简单地学好了。但出现在练习中速度比较慢的现象,可能是因为学生欲想口算,但又没这么好的反应能力,又想笔算,可又觉得没口算来得方便、快捷,因此,速度偏慢。还有一些学生用口算的方法,将今天所学的计算看成是前两次课学的计算,即没把十位上的余数忽视了。基于这样,我强调了不能口算,则一定要笔算的要求,或者可以进行口头检验来验算结果是否正确,这样可以避免一些不应该犯的错误。从课堂作业的情况来看,绝大部分学生都能正确地进行计算,正确率比较高。

  三年级的学习较一二年级来说,明显紧张了许多。上课时既要给学生充分的独立思考时间,又要有合作探索的过程,还要定量的练习,教材内容丰富、细腻,课堂教学安排总是显得比较紧凑。看来还是要多积累经验,把握好教学内容的重难点,控制好课堂教学时间。学生由于年纪小,做作业速度慢,升入三年级后总是很辛苦地应付着各个学科,希望他们很快能适应中年级的学习生活。

  课后反思3:

  由于本节内容是本单元两位数除以一位数计算中的一个难点,所以我在新课前,先复习了前一节内容的知识,出示了一题首位能整除的除法算式,根据全班同学阐述的运算过程进行板演,以此引出本节课的内容,并对本节课教学的首位不能整除的计算过程进行对比,使学生明确计算方法,注意计算的过程。可尽管放慢了讲解过程,还是有个别同学计算到个位时,忘却了十位上的余数。学生对两位数除以一位数中有余数和没有余数,首位能整除与首位不能整除的运算有点混,今后还得加大各个类型的除法练习。

数的整除教案8

  教学内容:北师大版六年级下学期P41第11~12题。

  教学目标:

  1、知识目标—使学生牢固地掌握数的整除有关概念,明确概念间的联系与区别。

  2、能力目标—结合知识的学习培养学生分析、判断推理、概括、归纳等能力。

  3、情感目标—使学生养成合作学习和勇于探索的良好品质。

  教学重点:

  明确概念间的联系与区别。

  教学难点:

  在整理中构建数的整除的知识网络。

  教学过程:

  一、结合情境,搜集概念。

  师:今天一共有多少位同学来这里和老师一起学习?

  生:40位同学。

  师:40位同学又分5个学习小组,哪位同学能用数的整除的知识说说40与5的关系?

  生:40能被5整除。

  生:5是40的约数。

  生:40和5的最小公位数是40,最大公约数是5。

  师:刚才大家说的很好,说到了整除、倍数、最小公倍数、最大公约数,同学们再想一想,在数的整除里,除了这几个概念外,我们还学习了哪些知识呢?

  生:整除能被2、3、5整除的特征,倍数、公倍数、最小公倍数、约数、公约数、最大公约数、质数、合数、质因数、分解质因数、变质数、奇数、偶数。

  二、叙述概念意义,梳理知识网络。

  (1)学生在小组内通过相叙述,质疑问难等方式回忆概念的意义。

  (2)学习复习完后各组互派代表相查概念的掌握情况,并向老师汇报抽查结果。

  2、梳理知识网络。

  (1)小组活动。师:从同学们反馈情况来看,各小组这些复习概念较好,但数的整除里知识之间存在什么联系和区别呢?请同学们动手整理一下。

  (2)对比交流。抽一小组在黑板上整理,然后各小组表示。

  师:通过展示,你们认为哪种观点有道理呢?各小组进行了充分的讨论后,都说出了道理。下面看到老师这里也有一个网络图。

  师:通过网络图更清楚地知道,在整除的前提下产生了一对概念—倍数、约数、倍数下面又产生了公倍数,最小公倍数的概念,约数下面又产生了公约数,最大公约数的概念;从分析自然数的个数又引入了质数合数的概念;能被2、3、5整除的'数一定是2、3、5的倍数,从能被2整除的这个角度,出现了奇数偶数概念。公约数只有1的两个数叫互质数,所以互质数与公约数有联系。

  三、巩固应用,拓展提高

  1、在56□的□里填上一个数字,使它能被3整除,又能被2整除。

  2、填空。(1)在1~20中是偶数的有( )是奇数的有( ),是质数的有( ),合数的有( )

  (2)如果a、b两数互质,那么它们的最大公约数是( )最小公倍数是( )。如果a是b的倍数,那么它们的最大公约数是( )最小公倍数是( )。

  (3)18和24的最大公约数是( ),最小公倍数是( )。

  四、全课总结,交流收获。

  1、今天这节课我们复习了哪些概念?

  2、这节课你最感兴趣的是什么?

  五、布置作业。

  北师大版总复习P41,第11题、第12题P52、9题。

数的整除教案9

  教学目标

  使学生掌握能被2、5整除的数的特征,并能正确判断一个数能否被2、5整除。

  教学重点、难点

  重点:理解和掌握被被2、5整除的数的特征是重点。

  难点:学会判断一个数能否被2、5整除是难点。

  教具、学具准备

  教学过程

  备 注

  一、复习准备

  谁能说一说整除的意义?什么叫做约数和倍数?

  板书:A÷B=整数(没有余数)

  自然数自然数

  倍数约数

  口答:

  15的约数有哪几个?(提示:15÷?)

  15的约数有1、3、15、5

  15的倍数有哪些?(提示:?÷15)

  15的倍数有:15、30、45、60...

  (3)20以内2的倍数有:()。

  (4)40以内5的倍数有:()。

  (3)“2、5的倍数”可以怎么求?

  出示两个图表,引导学生在()内填上2的倍数和5的倍数。

  二、导入新课

  “2、4、6、8、10...”这些数都能被2整除。“5、10、15、20...”这些数都能被5整除。它们都是“能被2、5整除的数”(板书)。

  谁能很快说出“50483”能否被2整除?能否被5整除?今天我们来研究“能被2、5整除的数”有什么“特征”(板书)。这是这节课要学的新知识。

  三、教学新知

  1、教师指图中能被2整除的数,问:你发现这些数有什么特征?归纳后,板书成:个位是0、2、4、6、8的数都能被2整除。

  2、教师指图中能被5整除的数,问:这些能被5整除的数有什么特征?归纳后,板书成:个位上是0或者5的数,都能被5整除。

  3、练一练(投影)

  (1)下面哪些数能被2整除,为什么?

  28、46、75、81、102、450

  教学过程

  备 注

  (2)下面哪些数能被5整除,为什么?

  26、40、52、65、90、105

  (3)把下面各数分别填在适当的`圈内。

  34、75、108、70、80、245、1049

  能被2整除的数能被5整除的数

  4、教师移动投影片成:

  问:大家发现了什么?启发学生说出70和80同时能被2和5整除。(出示:“能同时被2和5整除的数”)

  问:同时能被2和5整除的数有什么特征?再举例说明。板书:个位上是0的数,能同时被2、5整除。

  教师指着能被2整除的数,引导学生得出“偶数”、“奇数”的概念。

  5、练一练:

  (1)从21到30各数中:

  偶数有:()。

  奇数有:()。

  教师指出:“22、24、26、28、30”是连续的5个偶数;“21、23、25、27、29”是连续的5个奇数。

  (2)笔练:P37练一练中2、3题。

  6、引导学生讨论:

  (1)在自然数中有没有既不是偶数,也不是奇数的数?

  (2)在自然数中,最小的奇数和偶数各是几?有没有最大的奇数和偶数?

  (3)在自然数中除1外,每个奇数相邻的两个数是奇数还是偶数?每个偶数相邻的两个数又是什么数?

  五、教学

  问:在这节课里,你学到了哪些新知识?

  六、作业《作业本》。

  课后反思:

  整个教学过程中,都体现了学生是学习的主体,教师是教学活动的组织者、指导者、参与者。教师通过情境的设计,环节的设计,语言的激励引导,营造了一个宽松、和谐的课堂气氛,使教材式题动态化,教学过程活动化,练习巩固游戏化,使学生时刻充满愉悦的心情,积极地去探索、发现,逐步地去感知新知,领悟新知,从而达到培养学生的创新意识和自主学习的目的。

数的整除教案10

  教学目标

  在理解的基础上,掌握的特征,并能利用特征判断一个数能否被3整除.

  教学重点

  归纳能被3整除数的特征.

  教学难点

  归纳能被3整除数的特征。

  教学过程

  一、引入(课件演示:)

  1、教师提问:能被2整除的数有什么特征?

  能被5整除的数有什么特征?

  能同时被2、5整除的数有什么特征?

  2、导入

  (1)今天这节课,我们一起来研究.(板书课题)

  提问:谁能随便说个数?这个数要能被3整除.

  (2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)

  如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.

  为什么会有如此结果?到底有什么特征呢?现在我们一起来研究.

  二、新课(继续演示课件:)

  1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)

  12根铅笔(10根一捆)

  提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)

  教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.

  板书:

  2、再研究一个数:24

  演示:一个10可以想成一个9加1,那么20可以想成什么呢?(2个9加2)

  2个9加可以不再考虑,现在只需考虑谁?(2加4)

  如果3根一捆,正好打成两捆,说明什么?(24能被3整除)

  3、照这样我们来分析一下27

  板书:

  推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢? 50呢? 80呢?

  4、分析一个较大的数:126(教师演示)

  把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9。9能被3整除,所以126能被3整除.

  5、照此思路分析438

  板书:

  验证:用3整除,证明刚才的分析正确

  6、用此思路分析523

  板书:

  7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?

  概括能被3整除数的`特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.

  三、巩固练习(继续演示课件:)

  1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说132、231统统都能被3整除吗?

  2、判断下面各数能否被3整除:207、891、193、450、222、136

  3、在□中填几,这个数就能被3整除?

  17□(指导思路:找出最小的数,然后依次加3)

  4□2(要求一次说全)

  □25□(不必说全,即问:只要保证什么就可以?)

  4、下面的数是能被3整除,能被2整除,还是能被5整除?

  58、115、207、80、108、45

  5、比赛:利用给出6个数字:0,1,2,3,4,5,在30秒钟内,看谁能组出最多个能同时被2、3、5整除的三位数.

  四、思考练习

  看谁能用最快的方法判断出5169这个四位数能否被3整除.

  (引出弃3的倍数法,只考虑数字5+1)

  五、全课总结

  今天我们学习了哪些新知识?的特征是什么?

  六、布置作业

  1、写出三个能被3整除的偶数;

  2、写出三个能被3整除的奇数;

  3、先求出下面每个数各位上的数的和,看能不能被9整除;再算一算下面各数能不能被 9整除.

  162 378 586 632 2988

  七、板书设计

数的整除教案11

  一、教学目标:

  1、让学生自主探索三位数除以一位数(首位不能整除)的笔算方法,能正确地笔算三位数除以一位数(首位不能整除)的除法。

  2、进一步培养学生初步的分析、推理和估算能力。

  3、养成认真勤奋、独立思考的学习习惯。

  二、课时安排:1课时

  三、教学重点:笔算三位数除以一位数(首位不能整除)的除法的算理和算法。

  四、教学难点:首位除时有余数的除法计算方法。

  五、教学过程

  (一)导入新课

  口算热身。(3分钟左右)

  30÷3= 80÷4= 18÷3=

  16÷4= 48÷6= 24÷6=

  81÷9= 18÷9= 20÷6=

  选择其中1—2题请学生说说是怎么算的?

  笔算85÷5=说说计算方法,突出首位不能整除怎么办?在计算时要注意什么?

  (二)讲授新课

  出示:教材例6情境图。

  东港小学738名学生分2批参观奥林匹克体育中心,平均每批有多少人?

  根据问题列出算式。 738÷2= ( )

  (三)重难点精讲

  先估计一下结果,商大约是多少?

  大概是几百多。 独立思考后再和小伙伴交流。

  列竖式,说说与前面学的除法有什么不同? 指名回答第一步,板书百位上得数,注意想:7里面最多有几个2? 7除以2不能正好除完,还有余数,怎么办?

  接下去该怎么算?互相说一说。 交流。 余下的1是1个百, 1个百和3个十合起来,是13个十,13个十继续除以2。

  师:商是几,写在哪位上,为什么?

  生:商是6,写在十位上,因为6表示6个十。

  师:十位除后余下1怎么办?

  生:余下1是1个十,1个十和8个一合起来是18,18除以2商9,是9个一,写到个位上。

  找生完整说计算过程。请同学们打开课本,把58页算式继续完成。

  自己验算一下,看看算得对不对。

  试一试:527÷2=

  生独立做,交流算法。重点交流百位数余1怎么办?百位上余的1是1个百,1个百和2个十合起来继续往下除。

  说说今天学的除法和以前学的有什么不一样?

  回顾除法计算过程。

  在用竖式计算时遇到什么问题?你怎么解决的?

  说说怎样用竖式计算三位数除以一位数(首位不能整除)?

  怎样用乘法进行验算?

  (四)归纳小结:三位数除以一位数,当被除数百位上的数除以一位数有余数时,要把余数和十位上的数合起来继续除,除到哪一位,商就写到那一位的`上面。

  (五)随堂检测:

  1、想想做做第1题

  615÷5= 769÷3=

  做完后学生交流算法,重点说说百位上的余数怎样处理的。

  2、想想做做第2题

  先估计得数是几百多,再用竖式计算。

  605÷5= 986÷2= 716÷3= 965÷4=

  先找生说说估计得数是多少,怎么估的,再交流得数。用被除数百位上的数去除以一位数,来判断商是几百多。

  3、想想做做第3题

  张大叔家种了5棵荔枝树,去年一年一共收获荔枝875千克。平均每棵树收获多少千克荔枝?

  4、想想做做第4题。

  王老师用72元买笔记本。如果买每本2元的,能买多少本?如果买每本3元、4元或6元的呢?

  5、想想做做第5题。

  六、板书设计:

  三位数除以一位数(首位不能整除)

  七、作业布置:715÷5= 966÷4=

  八、教学反思

  资源文件列表:

数的整除教案12

  教学内容:

  人教版九年义务教育六年制小学数学第十册

  教学目标:

  1、知识目标:掌握能被3整除的数的特征。

  2、技能目标:能运用“能被3整除的数”的特征判断一个数能否被3整除。

  3、情感目标:培养学生自主探索的能力,合作学习的品质。让学生感受

  生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  探索“能被3整除的数”的特征

  教具准备: 多媒体课件

  教学过程:

  (一)

  师:刚才吉老师给同学们上了一节数学课,同学们在课堂上表现的特别棒!我也想给同学们上一节数学课,你们欢迎吗?

  生:……

  师:吉老师领大家做了报数游戏,现在我也领大家做一个报数游戏。你们愿意吗?

  生:……

  师:好,现在我们从第一排第一个同学开始报数,报数的要求是:第一个同学从3开始报数,第二个同学要在第一个同学报的数上加3,第三个同学要在第二个同学报的数上加3,依次类推,第一排最后一位同学报完后,第二排的第一位同学要接着往下报,第二排最后一位同学报完后,第三排的第一位同学要接着往下报,一直报到最后。听懂了吗?

  生:……

  师:想一想,第一位同学从3开始报数,第二位同学应该报几?第三位同学呢?

  生:……

  师:报数的时候,其他同学要注意听,同时想一想自己应该报几。并要记住自己的号码。现在开始:报数!

  生:……

  师:记住你们的号码了吗?

  生:……

  师:再报一遍!

  生:……

  师:游戏做到这里。上课!

  生:……

  师:同学们好!请坐!我们刚学过能被2、5整除的数的特征。现在请你们用3、4、5三个数字组成一个能被2整除的三位数。

  生:……

  师:为什么要把4放在个位上?

  生:……

  师:同样还用3、4、5三个数,组成能被5整除的三位数。

  生:……

  师:你是怎么想的?

  生:……

  师:判断一个数是否能被2或者5整除,只要看这个数的哪一位?

  生:……

  师:我们知道了能被2或者5整除的数的特征,请同学们大胆猜想一下,能被3整除的数是否也有特征呢?

  生:……

  师:有什么特征呢?

  生:……

  师:好,这就是我们这节课要研究的内容。(板书:能被3整除的数的特征)

  师:请同学们看大屏幕:(屏幕出示)

  3 6 9 12 15 18 21 24 27 30 33 36 39 42

  45 48 51 54 57 60 63 66 69 72 75 78 81

  84 87 90 93 96 99 102 105 108 111 114 117

  120 123 126 129 132 135 138 141 144 147 150

  师:这就是我们刚才报数游戏时同学们的号码。这些数都是3的倍数,都能被3整除,观察这些能被3整除的数,个位上有什么特点?

  生:……

  师:你从一个数的个位上能判断出这个数能被3整除吗?

  生:……

  师:那该怎么办呢?(学生猜想规律)请看大屏幕(屏幕出示)

  12—21 24—42 48—84 36—63

  师:你发现每组的两个数有什么联系?(追问)

  生:……

  师:你从大屏幕找出这样的例子吗?

  生:……(找)

  师:这些数把每个数的各位数字调换位置,它们仍然能被3整除。这说明能被3整除的数与组成这个数的数字无关。那么到底与什么有关呢?请同学们小组讨论,共同探讨一下。

  生:……

  师:讨论完了吗?哪个小组先来汇报?

  生:……

  师:回答的真好!其他小组同意他们的意见吗?

  生:……

  师:请同学们在大屏幕上任选一个数字,看看刚才的同学发现的是不是真理。

  生:……

  师:我们刚才发现的规律对于两位数、三位数是适用的,那么对于四位数、五位数是不是也适用呢?请看大屏幕(屏幕出示)

  3246 5709 3428331

  师:请同学们计算一下。这三个能被3整除的数各个数位的和是不是能被3整除?

  生:……

  师:看来同学们发现的规律确实很有道理。谁能把自己的发现用一句话叙述一下?

  生:……

  师:(谁能比他说的更完整)

  师:对,一个数的各位上的数的'和能被3整除,这个数就能被3整除。板书:(…)

  小结:以后判断一个数能不能被3整除,只要把这个数的个位上的数加起来,看看和能不能被3整除,就知道了。

  师:出示卡片:417,这个数能不能被3整除?

  生:……

  师:我现在把这个数的位置颠倒一下,出示:147。猜想一下老师下面会出什么数字?

  生:……

  师:猜对了。你说的这些数字能不能被3整除?你是怎么想的?

  生:……(鼓励)

  师:还记得我们课前做的游戏吗?看看你们忘没忘记你们的号码。现在我们继续做报数游戏,从3开始报数!

  生:……

  师:是偶数的同学站起来。请报一下你们的号码。

  生:……

  师:你们的号码能被2和3同时整除吗?

  生:……

  师:为什么?

  生:……

  师:真聪明!请坐!

  师:我们已经初步掌握了能被3整除的数的特征。你们想不想做几道题检验一下自己学习的情况。

  生:……

  屏幕出示:

  1、填适当的数使它能被3整除。

  12□ 7□ 3□0 40□

  □26 578□ □8 3□3

  2、你今年11岁,再过几年,你的岁数能被3整除?

  师:好了,通过检验,使我们对能同时被5和3整除的数的特征,认识的更深刻了。咱们再来做个练习,这里有5个数字,请你用这些数字组成同时能被2、3、5整除的三位数(每个数字在一个数里只能用一次),我只给20秒,看谁组的多、请写在本上,开始。

  生:

  师:时间到,有人组了三个,有人组了四个,最多的组了八个。我请一位组的最多的同学来说一说。

  生:120,210;150,510;240,420;450,540。

  师:对不对?

  生:……

  师:通过这节课的学习,你有什么收获?你对自己在课堂的表现满意吗?

  生:……

  师:这节课同学们的表现真棒,真高兴认识你们,谢谢同学们的合作!下课!

  附板书设计:

  能被3整除数的特征

  一个数的各位上的数的和能被3整除,这个数就能被3整除。

数的整除教案13

  教学内容:

  苏教版义务教育教材第十册第45~47页练习八(1~7)

  教学目标:

  1、能说出能被2、5、3整除的数的特征,知道奇数、偶数的概念;

  2、会正确判断一个数是否能被2、5或3整除;

  3、在探求特征的过程中增强数学模型意识,培养数感以及分析、综合、抽象、概括等思维能力及进行数学交流的能力。

  教学重点:抽象、概括出能被2、5、3整除的数的特征。

  教学难点:引导学生发现能被3整除的数的特征。

  教学准备:师生准备百数表、集合圈图(如课本),小黑板或投影仪。

  教学过程:

  第一课时

  一、创设情境激发兴趣

  1、师:前面我们一起学习了整除、约数和倍数,你们愿不愿意和老师比赛做下面这道题目?

  2、

  (师生比赛)

  2、师:你们任意报一个整数,我都能马上告诉它能否被2或5整除。(指名学生报数,教师判断,其他学生笔算验证。)

  3、师:你们想不想知道其中有什么秘密?今天我们一起去发现这个秘密好不好?(板书:能被2、5整除的数的特征)

  [通过师生比赛的形式激起学生的好奇心,引发他们的探究欲望,为后面的探究学习打下良好的心理基础。]

  二、探究规律概括特征

  1、探究能被2整除的数的特征。

  师:你想怎样去探究能被2整除的数的特征?(组织学生交流自己的设想。)

  [操作前的思考和交流,有利于学生明确操作的目标和方向,养成先思后行的习惯,避免操作的盲目性。]

  拿出课前准备的操作材料,你可以按自己的想法去发现这个秘密,也可以借助百数表。

  (1)学生操作、寻找规律:

  师:你从上面的操作中发现什么规律?

  (2)组织交流:

  师:同桌之间互相把自己的发现说一说。(同桌交流)

  师:你是怎样探究的?发现能被2整除的数怎样的特征?(集体交流)

  (当有学生汇报用百数表探究的时候,出示下图,并提问。)

  师:你为什么会用百数表探究,你能描述一下能被2整除的数在百数表中的排列模型吗?

  [通过交流帮助学生在非正式的直觉的观念与抽象的数学语言符号之间建立起联系,发展和深化学生对数学的理解,并为学生提供反思自己的操作和探究过程的机会。]

  123456789

  10111213141516171819

  20212223242526272829

  30313233343536373839

  40414243444546474849

  5051525354......

  (3)概括总结出能被2整除的数的特征。(板书:个位上是0、2、4、6、8的数,都能被2整除。)

  (4)教师讲解:所以判断一个数能否被2整除,只要看它的个位。(并指出)能被2整除的'数叫做偶数;不能被2整除的数叫做奇数。(板书)

  (5)练习、运用:判断下列各数中偶数有哪些?奇数有哪些?

  2435、346、127、303、284、0

  [探究过程中有意识地引导学生使用百数表,可以提高操作的效率,同时让学生直观感知能被2整除的数在百数表中的排列规律,渗透模型意识,并为最后的概括总结提供有力的表象支撑。]

  2、发现能被5整除的数的特征。

  (1)学生自主探索。

  (2)集体汇报交流。

  (3)练习巩固:完成第46页“练一练”。并找出能同时被2和5整除的数。

  [有了前面探索的基础,这一环节充分放开,让学生自主探索,进一步提高学生的自主探究和数学交流的能力。]

  三、巩固练习:

  1、的数能被2整除;不能被2整除的数叫做数。

  的数能被5整除;

  2、练习八1、2指名学生口答。

  四、课堂总结:今天我们探讨什么问题,你有哪些收获?

  五、课堂作业:练习八3、4

数的整除教案14

  教学内容:

  苏教版三年级上册第7-8页。

  教学目标:

  1、学习一位数除两位数的除法笔算方法;

  2、指导学生观察、思考计算方法;

  3、学会估算一位数除两位数的商。

  教学重点:

  被除数十位上的余数再除

  教学难点:

  被除数十位上数不能整除与个位上的`数一起再除

  教师准备:

  挂图、小棒

  教学过程:

  一、新课导入:

  请同学们把这52个羽毛球平均分给两个班,每个班能分到多少个?

  二、新课学习:

  1、动手分一分,说一说,

  2、我们一起来写出算式:(弄清算式中每个数字的意思)

  3、52÷2=26(个)

  26

  /--- ̄ ̄验算:26

  2/52×2

  4----

  -----52

  12

  12

  -----

  4、让我们来验算一下。(让学生自己选择说明或是计算的方法)

  5、边说边做:

  78÷3=84÷6=92÷2=80÷5=

  6、验算上面的计算题。

  7、根据三个数量,请你提出一些用除法计算的问题?(想想做做第5题)

  8、估算:你能估计出下面各题的商是多少吗?

  64÷5=85÷3=95÷4=91÷2=

  (10多)(20多)(20多)(40多)

  三、巩固练习:

  完成练习,第8页想想做做

  四、:

  说说今天学的除法和以前学的有什么不一样?

  五、布置作业:

  P8“想想做做”第2、4题。

  六、教学后记:

数的整除教案15

  一、教学内容:人教社六年制小学《数学》课本第十册第50—51页。

  二、教学要求:将本单元关于数的整除的概念进行系统整理,使学生进一步理解概念之间的联系和区别;掌握能被2、5、3整除数的特征和分解质因数;掌握求最大公约数、最小公倍数的方法。

  三、教学过程:

  (一)揭示课题

  师:今天我们上“数的整除”单元复习课[板书课题]请同学们回忆本单元所学的知识,积极举手发言。比一比谁平时学得扎实。

  (二)系统整理概念

  1.复习自然数、整数、整除、约数和倍数。

  师:举例说明什么是自然数?最小的自然数是几?有没有最大的自然数?

  生:在数物体的时候,用来表示物体个数的1、2、3、4、5、6 叫做自然数。最小的自然数是1,没有最大的自然数。因为自然数的个数是无限的。

  师:0是什么数?

  生:0是整数。

  师:自然数是整数吗?

  生:0和自然数都是整数。[板书:]

  师:在下面的式子里找出整除的算式,用手势表示算式的编号。

  [出示小黑板]

  (1)36÷12 (2)25÷10 (3)2.4÷0.6

  (4)16÷8 (5)4÷8 (6)3÷0.5

  [全班学生打手势,选出(1)(4)两个算式]

  师:你们判断正确,请说说什么是整除。

  生:数a除以数b(a、b均为整数),除得的商正好是整数而没有余数,就是数a能被数b整除。[板书:整除:a÷b]

  师:请根据上面的整除算式说明什么叫倍数?什么叫约数?

  生:36能被12整除,36就是12的倍数,12就是36的约数。

  师:24的所有约数有哪些?100以内24的所有倍数有哪些?请按从小到大的顺序“接力”回答,一人报一个数。

  生:[一组]24的约数有:1、2、3、4、6、8、12、24。

  生:[另一组]100以内24的倍数有:24、48、72、96。

  师:一个数的约数,最小的是几?最大的是几?

  生:一个数的约数,最小的是1,最大的是它本身。

  师:一个数的倍数,最小的是几?最大的是几?

  生:一个数的倍数,最小的是它本身,没有最大的倍数。

  2.复习能被2、5、3整除的数的特征,奇数、偶数。

  师:口答课本第50页第1题。

  生:18、30、46、102能被2整除:18、27、30、102、147、375能被3整除;30、55、375能被5整除。

  师:你们是怎样看出来的?

  生:根据这些数的特征。[略][板书:能被2、5、3整除的数]

  师:上面这些数中,哪些是奇数?哪些是偶数?

  生:能被2整除的都是偶数,其余的是奇数。

  师:把0、1、2三个数字排列成一个能同时被2、3、5整除的三位数。

  生:120、210。

  师:为什么个位排“0”?怎样知道这个数能同时被2、3、5整除?

  生:因为个位是“0”的数才能同时被2和5整除;这个三位数的十位和百位分别是1和2,它们的和能被3整除;所以这个数能同时被2、3、5整除。

  3.复习质数、合数、质因数、分解质因数。

  师:口答课本第50页第3题,并说明理由。

  生:13、29、43、79是质数,其余的是合数。因为这四个数的约数只有1和它本身。其余的数除了1和它本身还有别的约数。

  师:1是质数还是合数?

  生:1既不是质数也不是合数。

  师:上面这四个质数正好都是奇数,那么奇数都是质数吗?举例说明。

  生:不,奇数里也有合数。例如9、15等。

  师:对!奇数里有质数也有合数。请写出1~20里的奇数、偶数、质数、合数。

  [全班学生写数后指名口答]

  生:1~20里的奇数有:1、3、5、7、9、11、13、15、17、19。

  生:1~20里的偶数有:2、4、6、8、10、12、14、16、18、20。

  生:1~20里的质数有:2、3、5、7、11、13、17、19。

  生:1~20里的合数有:4、6、8、9、10、12、14、15、16、18、20。

  [教师将答案板书在小黑板上,引导学生观察、比较]

  师:从这些数可以看出,奇数和偶数是按能否被2整除来划分的,质数和合数是按约数的个数来划分的,不能混为一谈。

  师:请把课本第50页上第3题中的合数分解质因数。[全班学生练习,教师巡视,指名四人板演]

  26=2×13×151=3×1791=7×13117=3×3×13

  师:“26=2×13×1,2、13和1都是26的质因数。”这种说法对不对?

  生:不对,因为1不是质数。分解质因数要求把一个合数写成几个质数相乘的形式。[板书:—分解质因数]

  4.复习公倍数、公约数、最小公倍数、最大公约数、互质数。

  师:举例说明什么是几个数的公倍数、最小公倍数。

  生:几个数公有的倍数是这几个数的公倍数,其中最小的一个,是这几个数的最小公倍数。例如2的倍数有2、4、6、8、10、12 ,3的倍数有3、6、9、12、15 ,它们的公倍数是6、12 最小公倍数是6。[板书:公倍数—最小公倍数]

  师:举例说明什么是几个数的公约数、最大公约数。

  生:几个数公有的约数是这几个数的公约数,其中最大的一个是这几个数的最大公约数。例如8的.约数有1、2、4、8;12的约数有1、2、3、4、6、12。它们的公约数有1、2、4。最大公约数是4。

  [板书:公约数—最大公约数]

  师:什么是互质数?举例说明。

  生:公约数只有1的两个数叫做互质数。例如1和8,3和5。

  师:互质数一定都是质数吗?

  生:不一定。互质数有几种情况:1和一个不是1的自然数,如1和15;两个不相等的质数,如7和3;两个相邻的自然数,如8和9;

  生:还有,一个质数和一个不是它的倍数的合数,如7和25;两个相邻的奇数,如25和27;两个合数,如49和65。

  师:口答课本第51页第8题,并说明理由。

  生:7和14的最大公约数是7,最小公倍数是14。它们是倍数关系。

  生:5和8的最大公约数是1,最小公倍数是40。它们是互质关系。

  生:6和9的最大公约数是3,最小公倍数是18。18是6的3倍,是9的2倍。

  生:2、3和7的最大公约数是1,最小公倍数是42。这三个数两两互质。

  生:4、5和20的最大公约数是1,最小公倍数是20。4和5是互质数,20是三个数的倍数。

  5.小结。

  师:以上复习的这些概念都在自然数范围内,是由“整除”这个概念引出来的一系列概念;通过这个图表(指板书)可以看出这些概念之间的联系和区别。[板书如下]

  (三)巩固练习

  1.填空。

  (1)在1、3/5、0、0.125、378中,( )是自然数,( )是整数。

  (2)在自然数1~20中,既是奇数又是合数的数有();既是偶数又是质数的数有( );( )和( )都是合数,它们是互质数。

  (3)在下面各数的空格里填上一个数字,使它符合所提要求。

  5□,2□0,能被2整除又能被3整除。

  40□,7□□,能被3整除又能被5整除。

  □3□,1□0,能被2、5、3三个数整除。

  2.判断。(对的打“√”,错的打“×”)

  (1)3能被3整除。( )

  (2)互质的两个数一定都是质数。( )

  (3)凡是质数只有两个约数。( )

  (4)所有的偶数都是合数。( )

  3.把下列各数分解质因数。

  45 56 64 80 84 162 210

  4.求下面每一组数的最大公约数和最小公倍数。

  9和12 10和15 32和24

  14和3 12和18 26和78

  [全班学生练习,教师巡视,共同订正]

  (四)总结

  师:“数的整除”这一单元的知识,同学们学得很好。为我们学习后面的新知识打下了较好的基础。从上面的练习中反映出还要注意几个问题(略)。

【数的整除教案】相关文章:

小学六年级数学《数的整除》教学反思04-10

《数星星》教案11-22

《数手指》教案09-13

数羊群教案03-30

《数豆豆》教案09-28

相邻数教案05-03

数的守恒教案06-22

《数花灯》教案04-14

《数积木》教案04-29