平行四边形教案

时间:2024-08-18 21:52:13 教案 我要投稿

【精选】平行四边形教案三篇

  作为一名人民教师,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?以下是小编为大家收集的平行四边形教案3篇,希望对大家有所帮助。

【精选】平行四边形教案三篇

平行四边形教案 篇1

  一、内容和内容解析

  1.内容

  平行四边形对角线的性质.

  2.内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

  二、目标和目标解析

  1.目标

  (1)探究并掌握平行四边形对角线互相平分的性质.

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

  2.目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

  1. 引入要素 探究性质

  问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

  学生合作学习,交流自己的思路,并讨论不同的验证思路.

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

  师生归纳整理:

  定理:平行四边形的对角线互相平分.

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分.

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

  2.例题解析 应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的'长以及ABCD的面积.

  师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

  3.课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

  4.反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5.布置作业

  教科书P49页习题18.1 第3题;

  教科书第51页第14题.

平行四边形教案 篇2

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ② 填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的'面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( ) 和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高 4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

平行四边形教案 篇3

  【设计理念】

  本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

  【教学内容】

  《义务教育教科书》人教版数学课本五年级上册87——88页。

  【教材、学情分析】

  平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

  学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

  【教学目标】

  1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

  2、在探究的过程中感悟“转化”的数学思想和方法。

  3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

  4、引领学生回顾反思,获得基本的数学活动经验。

  【教学重点】

  推导平行四边形面积计算公式。应用公式解决实际问题。

  【教学难点】

  理解平行四边形的面积计算公式的推导过程。

  【教学准备】

  平行四边形纸片若干,直尺、剪刀、。

  【教学过程】

  一、创设情境,激发兴趣。

  讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

  【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

  二、组织探究,推导公式。

  1、联系旧知,做出猜想。

  看到这个题目,你想到了我们学过哪些有关面积的知识?

  大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

  【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的'面积公式。】

  2、初步验证,感悟方法。

  根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

  引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

  学生数方格并来验证自己的猜想。

  【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

  3、剪拼转化,发现规律。

  除了数方格,我们还能用什么方法来验证呢?(学生思考)

  能否将平行四边形转化成我们学过的图形再来进行计算呢?

  (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

  (2)展示交流。(演示)

  【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

  4、观察比较,推导公式。

  剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  小结: 长方形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

  【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

  5、展开想象,再次验证。

  是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

  学生先闭眼想象,再借助手中的工具加以验证。

  6、回顾反思,总结经验。

  回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

  把平行四边形转化成长方形面积。(剪拼—转化)

  然后找到转化前、后图形之间的联系。(寻找—联系)

  根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

  【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

  三、实践应用,解决问题。

  1、解决实际问题

  平行四边形花坛底是6米,高是4米,它的面积是多少?

  2、出示如下图

  算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

  4、现在你明白阿凡提是怎么打败巴依的了吗?

  引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

  思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

  【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

  四、总结全课,拓展延伸。

  转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

  通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

  【设计意图:试图把学生带入更加广阔的学习空间。】

  五、板书设计

  平行四边形的面积

  长 方 形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

【平行四边形教案】相关文章:

平行四边形教案02-19

平行四边形面积教案07-26

平行四边形教案优秀05-08

《平行四边形的面积》教案06-23

平行四边形的认识教案07-30

《平行四边形的认识》教案07-09

平行四边形的面积教案06-18

平行四边形教案4篇10-27

精选平行四边形教案4篇07-21

精选平行四边形教案三篇05-26