《分数的意义》教案

时间:2024-08-26 12:43:52 教案 我要投稿

《分数的意义》教案通用15篇

  作为一位不辞辛劳的人民教师,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的《分数的意义》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《分数的意义》教案通用15篇

《分数的意义》教案1

  学习内容:

  课本第97页例1及“做一做”,第99页练习十九第1、2、3题。

  学习目标:

  1.我会用分数与小数的关系,把小数化成分数。

  2.我能应用所学数学知识解决问题的`能力。

  学习重难点:

  小数化分数的方法。

  学习过程:

  一、导入新课

  请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?

  二、合作探究、检查独学

  1.自学例1,小组合作交流

  用分数表示:

  用小数表示:

  这两个结果有什么关系:

  2.用自己的话说一说怎样把小数化成分数?应注意什么问题?

  ①我的想法:

  ②完成课本97页“自己试一试”三个填空题。

  3.小组代表展示、汇报

  4.总结升华

  5.我能行:“做一做”把下列小数化成分数。

  0.4= 0.05= 0.37=

  0.45= 0.013=

《分数的意义》教案2

  教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  3、培养学生的应用意识。

  教学重难点

  1、理解归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  教学工具

  ppt

  教学过程

  一、激趣引入

  师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?

  课件出示唐僧、孙悟空、沙僧的图片

  师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?

  引出平均分,让学生列式:8÷4=2(张)

  总量÷份数=每份数

  二、探究新知

  1、老猪化得一张饼,如何分给4人呢?

  师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。

  把1个饼平均分给4个人,每个人分得多少个?

  师:这道题该怎样列式呢?(学生列式,师板书:1÷4)

  师:1÷4表示什么意思?

  生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。

  师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

  生:1/4个。(师板书)

  师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

  教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。

  师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?

  生:1/4个。

  师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。

  教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

  (课件出示例2)

  指名读题

  师:谁能列出算式?

  生:3÷4(师板书)

  师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

  小组操作,教师巡视指导。

  师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

  (小组边汇报,边演示)

  小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

  师:你能用一个式子表示一下吗?

  小组1:1÷4=1/4块。

  师:好。请接着汇报吧。

  小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

  师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的`方法。(教师边叙述方法,边进行课件演示)

  师:还有没有和这组方法不同的?

  小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

  师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

  师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

  师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

  学生小组讨论

  生:我们发现,被除数就是分子,除数就是分母。

  师:你能试着表示出来吗?

  生:被除数÷除数=被除数/除数(师板书)

  师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

  生1:a÷b=a/b(师板书)

  生2:老师,我认为还要写上b≠0。

  师:为什么b≠0?

  生:因为b表示除数,除数不能为0。

  生:分数的分母也不能等于0。

  师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

  师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

  学生观察算式,思考

  生:可以。比如3/4=3÷4。

  课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

  分数线相当于除号。

  师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

  请学生观察黑板算式,和同学讨论。

  学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

  三、巩固练习

  1、用分数表示下列算式的商

  (1)3÷2 = ( )

  (2)2÷9 = ( )

  (3)7÷8 = ( )

  (4)5÷12 = ( )

  (5)31÷5 = ( )

  (6)m÷n = ( )n≠0

  2、试一试

  ( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )

  3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

  4、填空

  9厘米=( )米59秒=( )分

  13分=( )时5时=( )日

  5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

  四、全课总结

《分数的意义》教案3

  一、教学目标

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  二、教材说明和教学建议

  教材说明

  1、本单元内容的结构及其地位作用。

  本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

  通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

  这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

  例:分数的意义和性质

  首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的`相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

  其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

  在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

  在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

  在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

  显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

  2、本单元教材的编写特点。

  与原教材相比,本单元教材的主要改进有以下几点。

  (1)多侧面地展现了分数的来源。

  在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

  从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

  现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。

  (2)五下分数的意义和性质

  这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

  从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

  在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

  在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

  这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

  (3)约数、倍数的有关知识与分数的相关知识结合起来教学。

  我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

  现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

  (4)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

  在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

  (5)部分内容作了适当的精简处理或编排调整。

  本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

  其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

  其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

  教学建议

  1、充分利用教材资源,用好直观手段。

  如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

  本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

  2、及时抽象,在适当的抽象水平上,建构数学概念的意义。

  为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

  在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

  4、这部分内容可以用20课时进行教学。

《分数的意义》教案4

  一、教学内容:

  人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。

  二、教材分析:

  “分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。

  三、教学目标:

  1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

  2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。

  3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

  四、教学重点:理解分数的意义

  教学难点:认识单位“1”和概括分数的意义

  五、学情分析:

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的.意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。

  六、设计理念:

  本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探

  究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。

《分数的意义》教案5

  【教学内容】

  教科书第1~2页的例1以及相关的练习。

  【教学目标】

  1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

  2?培养学生的分析能力和归纳概括能力。

  3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

  【教具准备】

  多媒体课件和视频展示台。

  【教学过程】

  一、复习引入

  师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

  等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

  二、教学新课

  1?教学例1,理解单位“1”

  师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

  师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

  等学生分好后,抽一个学生分的小圆在视频展示台上展示。

  师:这时,小华的爸爸又提出了问题。

  课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

  引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

  师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

  多媒体课件演示下面的月饼图:

  引导学生理解两个1/4代表的数量不一样。

  师:为什么会出现这种现象呢?

  引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

  师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

  让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

  师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

  师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

  请分一分,并填空。

  课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的'研究,同学们有什么发现?

  引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

  师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

  板书单位“1”的含义。

  师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

  2?理解并归纳分数的意义

  师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

  学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

  师:想想自己操作的过程,你能说一说什么是分数吗?

  学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

  师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

  归纳并板书分数的意义,板书课题。

  试一试:涂色部分占整个图形的几分之几?

  师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

  生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

  师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

  3?说生活中的分数

  师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

  学生说生活中的分数。

  三、课堂小结

  (略)

  四、课堂作业

  1?第4页课堂活动第2题。

  2?练习一第1,2,3,4题。

  分数的意义

  师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

  课件出示如下的题目:

  (1)把一个月饼平均分成4份,其中的1份是这个月饼的();

  (2)把一张手工纸

《分数的意义》教案6

  教学目标

  1、使学生在已初步认识分数的基础上,进一步理解分数的意义。

  2、弄清分子、分母、分数单位的含义。

  3、掌握分数的读、写方法,培养学生的抽象、概括能力。

  教学重点

  理解和掌握分数的`意义。

  教学难点

  抽象概括出分数的意义。

  教学过程

  一、讲授新课。

  (一)分数的产生。

  1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?

  2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?

  (板书课题:分数的意义)

  (二)分数的意义。

  1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?

  (依次出现糕点图、正方形图、1米长的线段图)

  2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。

  出示图片“苹果图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几个苹果?

  每份苹果是这个整体的几分之几?

  (边讨论边板书)

  出示图片“熊猫图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几只熊猫玩具?每份是这个整体的几分之几?

  4只熊猫玩具是其中的几份?是这个整体的几分之几?

  (边讨论边板书)

  3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?

  明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。

  (板书:单位“1”若干份一份或者几份分数)

  4、总结、归纳分数的意义。

  根据上面的例子,谁能说一说,什么样的数叫做分数?

《分数的意义》教案7

  教学内容:

  北师版五年级上册分数的再认识

  教学过程:

  一复习导入

  1用分数表示下图中的阴影部分,并说出这个分数所表示的意义(教材35页第1题)学生独立填后交流

  2揭示课题

  【设计意图回忆已学过的相关知识,了解学生的知识基础为新课教学做准备。】

  二理解分数的意义

  1活动一拿一拿

  出示三个盒子分别装有8、6、8支粉笔。

  师:这里有三盒粉笔,你能不能从每一盒中分别拿出整体的。

  请三名学生到前面拿粉笔。

  师:请先说说你打算怎么拿?

  师:其他同学注意观察,你发现了什么?

  生:我发现他们拿的支数有的一样,有的不一样。

  师:猜一下,会是什么原因?

  生:可能数错了吧!

  让学生数一数,证实数对了。

  师:没数错,为什么呢?

  生:可能三盒的粉笔总数不一样多。

  师:请三位同学告诉大家每个盒子里粉笔到底是多少支?

  师生小结

  2活动二说一说

  出示两本书

  师:这两本书怎样

  生:一厚一薄

  师:两位一人拿一本。左边的同学看了第一本书的1/3,右边同学看了第二本书的1/3,他们看的一样多吗?为什么?

  生:因为书的厚薄不同,也就是总页数不同,因此他们看得页数的1/3就不一样多。

  师:什么样的情况下,两本书的1/3是一样的?

  小结。

  3活动三想一想

  师:把6支、9支、12支花分别平均分给3个人,每人得到的`花可以怎样表示?

  师:你又有什么发现?

  师生小结。

  【设计意图:让学生在具体的情境中,体会“整体”不同相同的分数表示的大小不同通过想一想的活动,拓展学生对分数的认识,激发了学生学习兴趣。】

  三练习反馈

  1出示34页题目

  学生独立画后,交流展示

  2完成教材p35练一练中的题目

  第2题

  学生独立涂后并说想法

  第3题

  学生画后在说画法。再判断这些图形的大小一样吗?

  第4题

  结合“捐零花钱”的实际问题,体会分数的相对性

  【设计意图:练习的层次安排比较分明,层层深入的引导学生对分数进行充分的再认识。】

  四你知道吗

  学生阅读,感受分数的历史悠久和中华民族的聪明才智。

  五课堂小结

  板书设计分数的再认识

  整体不同同一分数表示具体数量不同

  厚多

  书1/3

  薄少

《分数的意义》教案8

  教学内容:苏教版教材第十册

  教学目标:

  1、使学生正确理解分数的意义,理解单位“1”的意义;

  2、培养学生的观察能力;

  3、培养学生的抽象概括能力。

  教学过程:

  一、引入

  1、米尺是用来干什么的?老师用米尺量自己的身高,看清楚,老师的身高能用整米数表示吗?

  2、再举个例子,一个苹果平均分给三个小朋友,每个小朋友得到的个数,能不能用整米数表示吗?

  3、在日常生活中,人们进行测量和计算的时候往往得不到整数的结果,这就需要引进一种新的数——分数。

  今天,就在原来学习分数的基础上学习分数的意义。(板书课题)

  二、动手感知

  (一)1、四年级已经初步认识了分数,你能说出几个分数吗?

  老师已经给你们准备了好多材料,这是一个饼,一个长方形,一段绳子,你能不能从这里面选出一样,表示出1/2,会吗?(学生动手操作)

  2、汇报

  (1)你是怎么分的?怎么得到1/2这个分数的?1/2是多大呢?

  师强调:其中的一份就是这个饼(长方形、绳子)的1/2。

  (2)继续汇报

  (3)除了这三种材料,你还能另选一种表示出1/2吗?

  3、好,刚才有的同学分的是绳子,它们有什么共同点吗?为什么都得到1/2呢?

  师:都是平均分成两份,这样的一份就是原来的哪个东西的?

  有没有不同的地方?

  生:有的'分的是,有的分的是,有的分的是,平均分的对象不同。

  (二)1、老师还为你们准备了另外一些学习材料,这是什么?你能表示出4只桃子的1/2吗?

  还大家准备了小正方体、水彩笔,请你从这些东西中任选一样表示出它的1/2,小组内一起完成。

  2、汇报

  (1)先请分苹果的小组来汇报,你们是怎么分的,怎么得到1/2这个分数的?

  师:4个苹果,当然先要看成一个整体,平均分成几份?一份几个苹果?一份就是这个苹果的。

  (2)分小正方体的小组汇报。

  个小正方体是这个小正方体的1/2。

  (3)分水彩笔

  12枝,把它看成一个整体,要得到1/2,也就是把它平均分成份,每一份是枝,一份就是这12枝的。

  (三)小结

  通过刚才的平均分,我们都能得到1/2,为什么?它们有什么共同点吗?(揭示:平均分)

  师:都是把这些物体平均分成两份,都表示这样的,所以用1/2来表示。不同点是什么?

  (四)1、师:有的是把一个物体、一个图形、一个计量单位平均分,也可以把许多物体组成的一个整体平均分,得到1/2这个分数,假如老师要你得到3/4这个分数,你们会不会?请你们从材料中随便选一样物体也行,选许多物体组成的一个整体也行,分一分,表示出3/4。

  2、汇报

  (1)我们先请分一样物体的来发言,你是怎么得到3/4这个分数的?

  (2)再请把许多物体看成一个整体得到3/4的来说一说。

  3、刚才我们通过平均分一个物体和许多物体组成的一个整体得到了3/4,为什么它们都能得到3/4呢?有什么共同点?

  (五)1/(1)、刚才我们平均分了许多物体,你能给这些物体分分类吗?分成哪几类?

  (2)一张饼、一个长方形、一根绳子等我们可以用自然数“1”来表示,像4个苹果、8个小正方体、一盒水彩笔,由许多物体组成的一个整体,我们也能用自然数“1”来表示,当然要加双引号,我们通常把它们叫做单位“1”。(板书

  (3)单位”1“可以表示一张饼、一个长方形、一根绳子等一个物体,也可以表示由一些物体组成的一个整体,比如说:。

  2、你联系实际想想看,你能举出一些单位“1”的例子来吗?

  (六)1、下面呢,老师不要你具体动手去分了,你脑子里想一个分数,然后确定一个单位”“”“1

  比如说:老师想一个分数9/10,确定一个单位“1”,把1米长的线段看作单位“1”,我把它平均分成10份,表示这样的9份,就是9/10,你们会吗?说给同桌听听看。

  2、汇报

  你想的是哪个分数?把什么看成单位“1”?

  3、总结

  (1)刚才我们通过平均分一个物体,一个计量单位,或者说一些物体组成的一个整体,也就是把单位“1”平均分,得到了好多分数,那么平均分的份数呢?可以是份、份等等,你能不能用一个词语来概括一下,也就是把单位“1”平均分成。

  (2)你怎么知道若干份这个词的?若干份是什么意思?

  表示这样的一份就是单位“1”的几分之几,表示这样的几份就是单位“1”的几分之几。

  (3)什么样的数叫做分数呢?(同桌相互说)

  老师请一个同学来说一下,你是怎样来定义这个概念的?

  (4)看书81页学生读分数的意义,教师板书

  这段话里,你认为哪几个词比较重要?

  三、1、做练习

  汇报

  2、做一些操作性的小练习

  信封里有一些小纸片,有红的,有白的,红色的小纸片几张?白色的呢?下面请同学们根据老师的指令正确的操作和表示,行吗?

  (1)拿出六张纸片,要求红的是所有纸片饿1/6,你是怎么拿的?

  (2)拿出六张纸片,要求横的是所有纸片的2/3

  (3)任意拿出纸片,只要表示3/5这个分数。

  还有没有跟他们都不一样的?

  (4)拿出三张纸片,要求它是所有纸片的1/4。

  (四)全课总结

  通过这节课,你学到了哪些知识?

《分数的意义》教案9

  教学内容:

  教科书第45,46页内容。

  教学目标:

  1、了解分数的产生,理解分数的意义。

  2 、理解单位“1”的含义,认识分数单位,能说明一个分数当中有几个分数单位。

  3、在理解分数含义的过程中,渗透比较,数形结合等数学思考方法,培养学生的抽象概括能力。

  教学重点:

  理解分数的意义。

  教学难点:

  理解单位“1”,认识分数单位。

  教学准备:

  学具:圆形,正方形,长方形,绳子等。

  教具:课件,磁扣。

  教学过程:

  一、复习导入

  1出示四分之一

  老师提问:同学们,你们认识这个数吗?那你们会读这个数吗?它的各个部分(用手指一指分数个部分)分别叫什么名字?

  学生思考回答、

  2老师小结:看来同学们对于以前学过的知识记得还挺清楚,今天我们将要继续学习有关分数的知识。请和老师一起半数课题。板书课题:分数的意义。

  二、探究、理解分数的意义。

  1、操作探究

  老师:请拿出你们准备的学具,认真阅读屏幕上的活动要求,开始操作。

  学生动手操作,老师巡视。

  2、反馈交流

  老师:现在谁来说一说你是怎样表示四分之一的?

  3、归纳小结,认识单位“1”

  老师:同学们说的都很好。现在请同学们再次观察你们刚刚完成的这些作品,看看他们有什么相同的地方,有什么不同的地方?先自己想一想,在和同桌说一说。

  学生:相同点都是平均分成了四份,取其中的一份。不同点是分得东西的总体和东西的数量不同。

  老师:我们再来回顾一下我们都平均分了什么?对了,我们平均分的可以是一个物体,也可以是一些物体(板书)我们在平均分时,把这一个物体或者一些物体都看做了一个整体(板书)把这一个整体平均分成四份,其中的一份用四分之一表示。这个整体我们也可以用自然数1来表示,我们通常把它叫做单位“1”(板书)

  老师:以前我们认识分数时知道:把一个物体平均分成若干份,表示其中一份或几份的数叫做分数。通过今天的学习,你想怎样更新分数的定义呢?学生自己归纳,并找几位学生说一说。

  老师:现在请同学们想一想,我们还可以把哪些东西看做单位一?

  4、再次研究四分之一,四分之三。

  老师;同学们,老师这里也有一幅图,可以用来表示四分之一,课件出示

  现在大家能看到的正是这幅图的`四分之一,你能猜到这幅图的整体是什么样子吗?

  老师:这里的四分之一是把什么看做了单位一?用纸盖住的部分该用哪个分数表示呢?为什么?

  5、研究几分之几。

  老师:看来你们都理解了四分之一和四分之三的含义了,接下来就请你们任意写一个人数,再和你的同桌说一说这个分数表示的意义。哪位同学愿意和大家分享一下你写的分数?(用分数的意义说)

  三、认识分数单位

  老师:同学们都说的很不错,下面同学们打开课本46页完成做一做。

  课件出示统一订正并出示分数单位的含义。

  出示几个分数,让学生或说他的分数单位。

  四、练习

  1、48页6,7题。

  2、课件拓展练习。

  五、看课件了解分数的产生。

  六、总结。

《分数的意义》教案10

  教材分析

  《百分数的意义和写法》是人教版六年级上册第五单元第一节的内容,本节课主要内容是百分数的意义和写法。它是在学生掌握了分数的意义和读写法的基础上进行教学的。百分数在日常生活中有着广泛的应用,学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是让学生完成百分数意义的自我建构尤为重要。通过这节课教学,使学生理解百分数的意义,能正确读写百分数,为今后学习有关百分数其它知识做了铺垫。

  学情分析

  六年级学生已经积累了一定的生活经验,学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,分数和百分数有密切的联系,但是意义又有所不同,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的.含义尤为重要。

  教学目标

  (1)知识与技能:使学生理解百分数的意义,掌握百分数的读、写法,应用百分数解决简单的实际问题。

  (2)过程与方法:通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。

  (3)情感、态度、价值观:结合相关信息,让学生体会百分数与生活的密切联系。

  教学重点和难点

  教学重点:让学生借助生活经验,通过生活实例来理解百分数的意义。

  难点:理解百分数与分数的联系和区别。

《分数的意义》教案11

  教学内容:

  苏教版《义务教育教科书·数学》五年级下册第52页例1及相应的练习。

  教学目标:

  1、学生初步理解单位“1”和分数单位的含义,能结合单位“1”描述具体分数的意义。

  2、学生经历分数意义的概括过程,进一步理解分数的意义,培养学生初步的观察、比较、分析、综合、抽象、概括等能力。

  3、学生在用分数描述和解释生活现象的过程中,体会分数与生活的密切联系,增强合作交流的意识以及学好数学的信心。

  教学重点:

  理解单位“1”的含义,概括分数的意义。

  教学难点:

  结合具体情境理解分数的意义。

  教学过程:

  一、联系生活情境,建立单位“1”概念

  1、同学们,数学课当然离不开数,看这个数认识吗?(幻灯片出示1)

  2、这可是大名鼎鼎的1,它能表示生活中的许多事物。

  3、瞧!一个苹果,一张桌子,一个正方形,一把尺子…

  4、你会用1表示生活中的事物吗?

  5、学生一一列举。

  6、能说完吗?是呀,说也说不完!的确1是万能的,不过听大家刚才说的,一个,一个,好像小朋友们也能说得出来,谁能说点高级点的1,像我们五年级的水平。

  7、学生一一列举,适时点评,他说得与刚才同学说得有什么不同?

  8、是呀!刚才大家说的是一个物体或一个计量单位,他说得是由许多物体组成的一个整体。1的内涵更加丰富了。

  9、谁还能接着说,能说完吗?同样也说不完。

  同学们,看来自然数1不仅可以表示一个物体,一个计量单位,还可以表示由许多个物体组成的整体。其实这个1在我们数学上还有一个更加专业的名字:单位“1”。

  设计意图从学生最熟悉的自然数1入手,体会数字1在现实生活情境中的应用,通过用数字1描述生活中事物的`活动,让学生体会到数字1的应用范围,一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,从而揭示这其实就是数学中的单位“1”,每一种新事物、新名称的学习我们都要借助学生已有的生活经验,从学生已有的数学经验中自然地引出单位“1”,水到渠成。

《分数的意义》教案12

  教学目标:

  要求学生在初步了解分数的基础上,对分数从感性认识上升到理性认识,理解分数的意义。

  通过练习加深同学们对分数的意义的理解。

  培养同学们分析问题、解决问题的能力。

  教学重点:

  理解单位1的含义。

  教学难点:

  理解单位1的含义。

  教学过程:

  (1)在初步了解分数的意义之后:

  请用分数表示2个红的圆。(1/2,2/4)

  讨论:同意哪种意见?

  为什么同样的两个红圆可以用两个不同的分数表示?

  那么老师用4/8表示这两个圆,你认为可以吗?为什么?

  你们认为还可以用别的分数来表示吗?(6/12,8/16,12/24)

  这样的分数你们能多少个?(写不完)为什么?

  思考:为什么同样的两个圆可以用不同的分数来表示呢?

  (平均分的份数不同,两个圆所占的份数也不同,分数就不同了)

  (2)巩固练习

  A、1/2 1/3 1/4 1/6 1/12 1/24

  任选一个分数,并在图上用阴影部分表示出来。

  B、任选一副图表示出它的5/6。

  (3)课堂小结

  今天发言的'同学请站起来。

  全班46人,发言的人数是全班人数的几分之几?

  还有一些同学没发言,请发言过的同学出题,让他们有机会发言。

  教学反思:

  在练习课的设计上,课本上的练习十分单调,将课外精选的一些练习安排在练习课上,取得了比较好的效果,学生对分数的意义有了一个比较完整的理解。

《分数的意义》教案13

  教学内容:五年级下册P60~62

  教学目标:

  1.明确分数的意义、分数单位及单位“1”等概念。

  2.知道分数是怎么产生的,分数是什么,分数有什么作用,体会认识事物的一般思维方式。

  3.在学习中能运用观察、分析、比较、辨析等方法,会合乎逻辑,较准确地阐述自己的和观点。

  教学重点:分数的意义、分数单位及单位“1”等概念的建立

  教学难点:理解单位“1”

  教学过程:

  一、引入

  1.了解起点:关于分数,你已经知道了什么?在自学中,你又了解到哪些概念,又有什么困惑?

  2、明确学习目标。

  3.揭题:今天让我们继续来研究分数的产生与意义。

  (板书课题:分数的产生与意义)

  二、展开

  (一)分数的`产生

  1、出示主题图1,介绍:古时候,人们在结绳计数时,遇到了困难,请看:你觉得剩下的长度用什么数表示比较合适呢?

  为什么?

  2、出示主题图2,说一说:每人分到()个月饼,

  ()包饼干。

  3、:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  4、介绍分数的演变过程:据记载分数在3000多年前,古埃及就出现了分数记号;在0多年前,我国用算筹表示分数;后好,印度用阿拉伯数字表示分数,在公元12世纪,阿拉伯人发明了分数线,这种方法一直沿用至今。

  (二)感受分数的意义,建立单位“1”的概念

  1、在每一幅图上表示出1/4(了解了分数的产生过程,你会用分数来表示吗?)

  *学生涂一涂并交流:你是怎么想的?

  *反馈:说说你的想法

  *质疑:观察:刚才在用1/4表示的过程中,有什么相同的地方和不同的地方?

  小组交流:说说相同点和不同点。(引出一个物体、多个物体)

  学生汇报、教师追问:为什么都是平均分成4份,取其中的1

  份,可相对应的是1、2、3呢?(总数的不同)

  2、感知概念:单位“1”、分数的意义

  移动()说明:一个圆,一条线段,我们把它叫做一个物体。(板书:一个物体)还有哪些是一个物体?

  移动()它们为一个整体。

  (板书:一个整体)

  (注意引导辨析:一个计量单位例:1米长的线段的1米,就是计量单位,哪些是一个整体?)

  3、揭示概念:一个物体、一个计量单位、多个物体都可以看作“一”个整体,一个整体可以用自然数1来表示,我们给它取个名字叫单位“1”。

  4、强化延伸。

  这几幅图中,单位“1”可以指什么?

  (哪些可以看作单位“1”)

  单位“1”指什么?

  单位“1”指什么?

  5、分数概念:

  (1)除了我们刚才表示过的以外,

  你知道用还可以表示什么?

  (2):能用1/4表示的有很多很多,只要是把单位“1”

  平均分成4份,表示这样1份的数,都可以用1/4来表示。

  你们都已经能正确地表示1/4了,那么别的分数你们能表示吗?

  (3)其它分数课件演示

  ①谁能用分数表示出阴影部分的大小?

  你是怎样想的?

  这一部分呢?

  这一部分呢?为什么都用表示?

  (4)归纳意义:

  通过上面的学习,像这些把单位“1”平均分成若干份,表示

  这样的1份或几份的数,叫分数。(板书概念)

  6、巩固练习:

  (1)用分数表示空白部分,并说一说。

  里面有()个

  里面有()个

  里面有()个

  里面有()个

  观察:有什么发现?知道叫什么?追问:为什么是分数单位?

  :整数我们学过计数单位,6里面有几个一,60里面有几个十。个、十、百……是计数单位,分数也应有分数单位。

  7、分数单位:看看书上是怎样定义分数单位的。(读一读)

  三、练习

  1、5/6分数单位是(),5/7……5/100,51/100,

  2、在四幅中选一幅表示出5/6。

  (1)学生活动。

  (2)反馈。(逐一反馈,重点解决以下问题)

  ①第4幅,还可以用分数()表示,两个分数大小(一样),

  什么不一样?(意义、分数单位)

  ②第一幅,去掉“”,还可以用什么分数表示?

  想用表示,怎样表示让人一眼就可看出?

  (每个○平均分成2份)还可以用哪个分数表示?

  :可以用很多个分数表示,它们只是大小相等,意义、分数单位不一样。

  四、拓展:

  出示两朵笑脸,是××同学这学期所得笑脸总数的1/5,这学期他得了()朵笑脸,是××同学这学期所得笑脸总数的

  1/8,这学期她得了()朵笑脸。

  设疑:同样是2朵笑脸,为什么一会儿是1/5,一会儿是1/8,你是怎么想的?

  五、

  收获?这节课你的表现用一个分数表示?如果表现非常棒可得10分,那你能说说你根据自己的你能的几分?

《分数的意义》教案14

  教学内容:

  北师大小学数学五上《分数》单元第一课时

  教学目标:

  1、合具体的情境,进一步体会"整体"与"部分"的关系。

  2、通过学生参与具体操作活动,体验数学思考的教程与乐趣。

  教学重,难点:

  体会一个分数对应的"整体"不同,所表示的具体数量也不同。

  教学过程:

  复习与引入:

  出示:

  师:请用一个数分别来表示图中的涂色部分

  生:1/2,1/2,1/4

  师:请你说一说1/2表示什么意思

  生:把一个整体平均分成2份,其中的一份是这个整体的1/2

  师:分数3/4表示什么意思

  师:这个整体不仅可以是一个物体,也可以是表示一堆物体。

  师:这是两张同样大小的长方形纸,这两个1/2相等吗

  生:相等(板书:1/2=1/2)

  二,取珠子,比多少

  1、取1/2

  师:这有两个盒子ab装有一些珠子,请两个同学上来各取出每个盒子珠子的1/2

  生1:从a盒子中取出了3个

  生2:从b盒子中取出了4个

  师:同样是取了1/2,为什么会不一样呢

  (同桌互相议论)

  生3:ab两个盒子中的珠子的数量不一样多,所以拿出的1/2不一样多

  师:猜一猜,哪个盒子中的.珠子数量多一些为什么

  生4:b盒子多一些,因为取出来的多一些,总体也就多一些

  师:每个盒子各有多少个怎么知道的

  生5:a盒子有6个,b盒子有8个。a盒有2个3,b盒有2个4。

  师小结:都取了1/2,但由于对应的整体不一样多,所以取出来的数量不一样。如果要使取出的一样多,要怎么放珠子

  生6:各放入8个

  生7:各放入6个

  师:也就是放各自对应的整体相同。

  2、练习:

  李老师和小明各看了一本书的1/3,(老师拿一本厚书,小明拿一本薄书)谁看得多为什么

  如果李老师与小明看的书交换,还是各看了1/3,谁看得多为什么

  3、比大小,放珠子

  师:我们知道,1/4小于3/4

  师:这有两个盒子ab,要求从a盒中取出1/4,从b盒中取出3/4,要求a盒取出来的珠子数大于b盒取出来的珠子数。两个盒子该怎么放珠子

  学生讨论

  一组同学商量,到前台操作展示过程

  同桌甲:从a盒中放入12个,从b盒中放入4个

  同桌乙:从a盒中放入16个,从b盒中放入4个

  生:我发现a盒中放入的珠子要比b盒中的多才行。

  师:这要求从a盒中取出1/4,从b盒中取出3/4,要求a盒取出来的珠子数等于b盒取出来的珠子数。两个盒子该怎么放珠子

  学生讨论操作

  生:我发现只要a盒中放入的珠子是b盒中的3倍,就相等

  师:这是为什么

  生:因为b盒中取的份数是a盒的3倍

  三,分析与讨论

  师:1/4小于3/4,这是我们以前都知道的知识,而今天我们发现a盒的1/4有可能等于可大于b盒的3/4,到底1/4与3/4之间有什么大小关系

  生1:不能比

  生2:1/4小于3/4

  学生争辩明确:要比大小,必须在整体相同的情况下,分数1/4/小于3/4默认是相同的单位1。

  四,练习:

  1.p34画一画:

  一个图形的1/4是,这个图形什么

  2.填空:

  一筐苹果的1/5是1个苹果,这筐苹果共个

  一筐苹果的1/6是1个苹果,这筐苹果的2/6是个

  一筐苹果的1/2是2个苹果,这筐苹果的1/4是个

  一堆苹果的2/5是400千克,这堆苹果共千克。

  3.p35:小明捐了零花钱的1/4,小芳捐了零花钱的3/4,小芳捐的一定比小明多吗?为什么?(分别讨论)

《分数的意义》教案15

  一、说教材

  教材地位:

  分数的意义和性质这部分内容是在学生对分数已经有了初步的认识、掌握了约数和倍数、最大公约数、最小公倍数等知识的基础上进行教学的。关于分数的意义,学生在四年级时,已借助操作,直观初步认识了分数的基础上教学的。要通过教学使学生从感性上升到理性认识。根据出分数的意义,理解单位“1”和分数单位,这是学生系统学习分数的开始,是本单元的重点,它是解答分数四则运算和应用题的重要基础。

  教学目标:

  (1)通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念

  (2)在活动中培养学生分析、综合、比较、抽象、根据等初步的逻辑思维能力

  (3)体验学习数学的成功和愉悦,培养学生学习数学的积极情感

  教学重点:

  分数意义的归纳与单位“1”的理解

  教学难点:

  把多个物体组成的'一个整体看作单位“1”

  教学准备:

  每小组一张圆形纸片,一条一分米长的线段,6个正方体,8个苹果图

  二、说教法学法

  1、教法

  “分数的意义”一课,是小学数学概念教学比较抽象,学生较难理解的特点,为能使学生较好地理解掌握这一内容,采用启发式教学。教学中充分利用直观演示,遵循概念教学的原则,启发引导学生由感性认识到理解认识,由具体到抽象,充分调动学生学习的积极性、主动性、发展学生的思维能力。

  2、学法

  古人云:“授人一鱼,仅供一饭之需,授人一渔,则终身受用无穷”。现代教学认为教学的任务不仅是传授知识,而重要的是教给学生获取知识的方法。因此,在教学中特别注重加强对学生学法指导。

  (1)通过教学使学生掌握从具体直观到抽象概括的思维方法,为了使学生建立清晰如果用图表示14,100个人会有100种表示方法,老师为你们每组提供了一些材料,你们能分别表示出它的14吗?

  本环节充分利用“分数初步认识”中学到的知识,通过对具体、形象的实物图片的观察,学生亲自动手操作,参与获得知识的过程。

  2、动手操作,感知意义

  学生分五人一组,每组有一套学具,然后让学生选一种材料自己动手创造分数,并提出学习要求。学生操作,汇报交流展示学生把不同物体看做一个整体所创造的分数。

  本环节在大量感性认识基础上,充分调动学生眼、口、脑、手等多种感官参与认识活动。

  3、观察比较、抽象单位“1”

  思考:你们能给平均分的对象分分类吗?

  引导生归纳:一个物体,一个计量单位,一个整体都中可以用自然数“1”来表示,通常叫做单位“1”。

  讨论:单位“1”为什么要加引号?它同自然数1的意义一样吗?

  你能举例说说我们生活中哪些可以看作单位“1”。

  本环节,通过小组讨论比较异同,全班交流,全面具体地感知单位“1”,这是理解分数意义的关键。

  4、抽象概括、归纳分数的意义

  (1)学生尝试自己归纳分数的意义。

  (2)理解“若干”一词的意义。

  (3)结合学生发言,板书分数的意义。

  本环节引导学生由感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。

  三、分层练习,巩固深化。

  为巩固所学新知识,设计了基础练习和拓展练习,贯穿“讲练结合,练为主线”的教学原则,通过巩固学生对新知识理解掌握,发展学生的思维能力。

  四、引导反思,全课小结

  今天这节课你有哪些收获?对自己的学习满意吗?请说说自己的感受和体验。

  总之本课教学设计,根据学生认知规律,由直观形象思维向抽象思维过渡特点进行教学,旨在使学生在初步认识分数的基础上,建立明确分数意义概念。教学重点放在把一个整体看作单位“1”上,让学生通过大量实例感知分数意义的基本内涵,培养学生归纳概括能力。在教学中让学生动手、动口、动脑,让学生积极主动地参与学习,使学生对分数意义有较深刻认识。

【《分数的意义》教案】相关文章:

分数的意义教案08-26

分数的意义教案08-17

《分数的意义》教案03-16

分数的意义教案02-27

《分数的意义》教案10-14

分数的意义教案【热】09-21

分数的意义教案【热门】06-09

分数的意义教案【精】09-28

【热门】分数的意义教案09-29

分数的意义教案【荐】07-22