平行四边形教案

时间:2023-05-23 11:48:03 教案 我要投稿

实用的平行四边形教案集锦八篇

  作为一位杰出的老师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写才好呢?以下是小编为大家整理的平行四边形教案8篇,欢迎大家分享。

实用的平行四边形教案集锦八篇

平行四边形教案 篇1

  教学内容

  人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

  教学目标

  1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学过程:

  一、情境激趣

  1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

  2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

  3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

  提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

  4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

  二、自主探究

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:平行四边形的`面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (4)利用课件演示把平行四边形变成长方形过程。

  (5)观察并思考以下两个问题:

  A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  (2)学生独立完成并反馈答案。

  三、看书质疑

  四、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

  五、巩固运用

  1.练习十五第1题,让学生独立完成后反馈答案。

  2.你会计算下面平行四边形的面积吗?

  3.你能想办法求出下面平行四边形的面积吗?

  4.练习十五第3题。

  六、全课小结(略)

平行四边形教案 篇2

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的'两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ② 填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( ) 和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高 4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

平行四边形教案 篇3

  练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。

  练习重点:正确运用公式计算所学的图形的面积。

  教具准备:投影

  教学过程:

  一、基本练习

  1.回答下列各图面积地计算公式和字母公式。

  长方形长×宽ab

  正方形边长×边长a2

  平行四边形底×高ah

  三角形底×高÷2ah÷2

  梯形(上底+下底)×高÷2(a+b)h÷2

  2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?

  二、指导练习

  1.练习十八第12题:计算下面每个图形的面积。

  3米8米12米

  5.6米9.5米12米

  5厘米

  5.4

  分5.8厘米5.2厘米

  米

  3分米5厘米7厘米

  ⑴省独立审题,计算每个图形的面积。

  ⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2”

  ⑶指6名学生板演,集体订正。

  2.练习十八第15题。生独立审题并计算出三角形的.面积,注意单位的换算。

  三、课堂练习

  练习十八第14题

  四、攻破难题

  1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?

  分析与解:

  ⑴已知梯形的面积=(上底+下底)×高÷2

  ⑵上底+下底=21+45=66米

  ⑶高=759÷66×2=23米20厘米

  2.17题:已知右面梯形的上底

  是20厘米,下底是34厘米,其中涂色

  部分的面积是340平方厘米。这个梯形

  的面积是多少?34厘米

  分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。

  高:340×2÷34=20厘米,

  面积:(34+20)×20÷2=540平方厘米

  3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

  15厘米

  12厘米

  25厘米

  分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。

  (15+25)×12÷2=240平方厘米

  25×12÷2=150平方厘米

  240-150=90平方厘米

  4.思考题4厘米

  右图中,梯形的面积是7212

  平方厘米。请你算出阴影厘

  部分的面积。米

  解法一:先算出没有阴影部分

  的面积:4×12÷2=24平方厘米,

  再用梯形的面积减去这个三角形

  的面积:72-24=48平方厘米。

  解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:

  72×2÷12-4=8厘米

  再算阴影部分的面积:8×12÷2=48平方厘米。

  五、作业

  练习十八11、13题

平行四边形教案 篇4

  【设计理念】

  本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

  【教学内容】

  《义务教育教科书》人教版数学课本五年级上册87——88页。

  【教材、学情分析】

  平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

  学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

  【教学目标】

  1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

  2、在探究的过程中感悟“转化”的数学思想和方法。

  3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

  4、引领学生回顾反思,获得基本的数学活动经验。

  【教学重点】

  推导平行四边形面积计算公式。应用公式解决实际问题。

  【教学难点】

  理解平行四边形的面积计算公式的推导过程。

  【教学准备】

  平行四边形纸片若干,直尺、剪刀、。

  【教学过程】

  一、创设情境,激发兴趣。

  讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

  【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

  二、组织探究,推导公式。

  1、联系旧知,做出猜想。

  看到这个题目,你想到了我们学过哪些有关面积的知识?

  大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

  【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

  2、初步验证,感悟方法。

  根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

  引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

  学生数方格并来验证自己的猜想。

  【设计意图:让学生在算、数、观察的'基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

  3、剪拼转化,发现规律。

  除了数方格,我们还能用什么方法来验证呢?(学生思考)

  能否将平行四边形转化成我们学过的图形再来进行计算呢?

  (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

  (2)展示交流。(演示)

  【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

  4、观察比较,推导公式。

  剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  小结: 长方形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

  【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

  5、展开想象,再次验证。

  是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

  学生先闭眼想象,再借助手中的工具加以验证。

  6、回顾反思,总结经验。

  回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

  把平行四边形转化成长方形面积。(剪拼—转化)

  然后找到转化前、后图形之间的联系。(寻找—联系)

  根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

  【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

  三、实践应用,解决问题。

  1、解决实际问题

  平行四边形花坛底是6米,高是4米,它的面积是多少?

  2、出示如下图

  算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

  4、现在你明白阿凡提是怎么打败巴依的了吗?

  引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

  思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

  【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

  四、总结全课,拓展延伸。

  转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

  通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

  【设计意图:试图把学生带入更加广阔的学习空间。】

  五、板书设计

  平行四边形的面积

  长 方 形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

平行四边形教案 篇5

  【教学目标】

  1、知识与技能:

  探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。

  2、过程与方法:

  经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。

  3、情感态度与价值观:

  在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。

  【教学重点】:

  探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。

  【教学难点】:

  发展合情推理及逻辑推理能力

  【教学方法】:

  启发诱导法,探索分析法

  【教具准备】:多媒体课件

  【教学过程设计】

  第一环节回顾思考,引入新课

  什么叫平行四边形?

  平行四边形都有哪些性质?

  利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?

  [学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的.面积,但找不到合适的解决办法.

  [教学内容]教师乘机引出课题,明确学习任务.

  第二环节探索发现,应用深化

  1、做一做:(电脑显示P100“做一做”的内容)

  如图4-2,□ABCD的两条对角线AC,BD相交于点O,

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)能设法验证你的猜想吗?

  [教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.

  2、观察、讨论:(小组交流)

  通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。

  [教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.

  结论:平行四边形的对角线互相平分。

  [教师活动]“实验都是有误差的,我们能否对此进行理论证明?”

  [学生活动]此问题难度不大.

  [教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.

  活动二

  刚才财主巴依提出的问题你能解决吗?

  学生口述过程,教师最后给出规范的解题过程。

  练一练:

  财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?

  [教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.

  活动三

  电脑显示P101关于铁轨的图片

  提出问题:“想一想”

  已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,

  (1)线段AC,BD所在直线有什么样的位置关系?

  (2)比较线段AC,BD的长。

  引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。

  (让学生进一步感知生活中处处有数学)

  A.(学生思考、交流)

  B.(师生归纳)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四边形ACDB是平行四边形

  →AC=BD

  归纳:

  若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。

  即平行线间的距离相等。

  [议一议]:

  举你能举出反映“平行线之间的垂直段处处相等实例吗”?

  活动目的:

  通过生活中的实例的应用,深化对知识的理解。

  第三环节巩固反馈,总结提高

  1、说一说下列说法正确吗

  ①平行四边形是轴对称图形()

  ②平行四边形的边相等()

  ③平行线间的线段相等()

  ④平行四边形的对角线互相平分()

  2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=

  3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为

  4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?

  5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  第四环节评价反思,目标回顾

  活动内容:

  本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?

  [布置作业]:

  P102习题4.21,2,3

  探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF

平行四边形教案 篇6

  教学目标

  知识与技能:

  1.使学生理解平行四边形和梯形的概念及特征。

  2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。

  过程与方法:

  通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。

  情感态度和价值观:

  通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

  重点理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。

  难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。

  教具图形,剪子,七巧板

  教学过程

  教师导学

  一、创设情景感知图形

  1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页)

  2.在我们美丽的校园中,你能找到哪些四边形?

  梯子的侧面-梯形

  3.画出你喜欢的`一个四边形。说一说什么样的图形是四边形?

  展示学生画出的四边形,请学生标出它们的名称。

  长方形 平行四边形

  梯形 正方形

  4.小组交流:

  从四边形的特点来看,四边形可以分成几类?

  学生讨论交流

  二、探究新知

  1.归纳平行四边形和梯形的概念

  有什么特点的图形是平行四边形?

  两组对边分别平行的四边形叫做平行四边形。

  强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。

  提问:

  ①生活中你见过这样的图形吗? 它们的外形像什么?

  ②这些图形有几条边?几个角?是什么图形?

  ③这几个四边形有边有什么特点?

  ④它是平行四边形吗?

  ⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?

  只有一组对边平行的四边形叫做梯形。

  5.现在你有什么问题吗?

  长方形和正方形是平行四边形吗?为什么?

  6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗?

平行四边形教案 篇7

  一、内容和内容解析

  1.内容

  平行四边形对角线的性质.

  2.内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

  二、目标和目标解析

  1.目标

  (1)探究并掌握平行四边形对角线互相平分的性质.

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

  2.目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

  基于以上分析,本节课的教学难点是:综合运用平行四边形的'性质进行有关的论证和计算.

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

  1. 引入要素 探究性质

  问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

  学生合作学习,交流自己的思路,并讨论不同的验证思路.

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

  师生归纳整理:

  定理:平行四边形的对角线互相平分.

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分.

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

  2.例题解析 应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

  师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

  3.课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

  4.反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5.布置作业

  教科书P49页习题18.1 第3题;

  教科书第51页第14题.

平行四边形教案 篇8

  【学习目标】

  1、平行四边形性质(对角线互相平分)

  2、平行线之间的距离定义及性质

  【新课探究】

  活动一:

  如图,□ABCD的两条对角线AC、BD相交于点O.

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)想办法验证你的猜想?

  (3)平行四边形的性质:平行四边形的对角线

  几何语言:∵四边形ABCD是平行四边形(已知)

  ∴AO==AC,BO==BD()

  活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

  (1)线段AC,BD有怎样的位置关系?

  (2)比较线段AC,BD的长短.

  (3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

  【知识应用】

  1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.

  3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的.距离是

  【当堂反馈(小测)】:

  1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

  3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

  【巩固提升】

  1.平行四边形的两条对角线

  2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

  4、下列性质中,平行四边形不一定具备的是()

  A、对角互补B、邻角互补C、对角相等D、内角和是360°

  5、下列说法中,不正确的是()

  A、平行四边形的对角线相等B、平行四边形的对边相等

  C、平行四边形的对角线互相平分D、平行四边形的对角相等

  6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

  7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

  8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

  (1)写出图中每一对你认为全等的三角形;

  (2)选择(1)中的任意一对进行证明。

  9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

  (1)多做几条这样的直线,看看它们有什么共同的特征

  (2)试着用旋转的有关知识解释你的发现。

【平行四边形教案】相关文章:

平行四边形教案03-03

平行四边形面积教案02-09

平行四边形教案4篇05-16

【精选】平行四边形教案4篇05-19

【精选】平行四边形教案3篇05-20

平行四边形教案四篇05-21

精选平行四边形教案四篇05-15

平行四边形教案六篇05-15

平行四边形教案3篇05-13

平行四边形教案三篇05-14