关于平行四边形教案锦集9篇
作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?以下是小编精心整理的平行四边形教案9篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的'实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的`中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 课型: 新授课。 教学分析: 本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。 教学目标: (一)知识与技能: 引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。 (二)过程与方法: 学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。 (三)情感态度价值观: 培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。 教学策略: 创设情景、动手实践、交流合作。 教具学具: 多媒体课件、长方形、正方形、格子纸、三角板。 教学流程: 一、创设情景,提出问题。 今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题) 二、协作探索,研究问题。 1、教学长方形、正方形。 (1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角? (2)教学对边的概念: 在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示) (3)小组合作研究长方形、正方形的特点。 下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。 长方形的对边和正方形的`边有什么特点,角有什么特点? (4)指名汇报,并演示自己发现的过程。 共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。 (5)在方格纸上画出长方形、正方形 2、教学平行四边形。 (1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗? 我们把这样的四边形叫做平行四边形。 (2)平行四边形的特点: 出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点? (3)总结:平行四边形有四条边,四个角,对边相等。 (4)动手操作:拿出活动的四边形:拉动之后你发现了什么? 动手操作 三、运用知识,解决问题。 1、猜一猜。(多媒体演示) 2、找一找。(多媒体演示) 3、说一说。 四、总结。 你今天从智慧星那里学到了什么? 板书设计: 长方形正方形和平行四边形 边:4条 4条4条 对边相等全都相等对边相等 角:4个直角4个直角4个 教学目标 知识与技能: 1.使学生理解平行四边形和梯形的概念及特征。 2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。 过程与方法: 通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。 情感态度和价值观: 通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。 重点理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。 难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。 教具图形,剪子,七巧板 教学过程 教师导学 一、创设情景感知图形 1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页) 2.在我们美丽的校园中,你能找到哪些四边形? 梯子的侧面-梯形 3.画出你喜欢的一个四边形。说一说什么样的图形是四边形? 展示学生画出的四边形,请学生标出它们的名称。 长方形 平行四边形 梯形 正方形 4.小组交流: 从四边形的特点来看,四边形可以分成几类? 学生讨论交流 二、探究新知 1.归纳平行四边形和梯形的概念 有什么特点的图形是平行四边形? 两组对边分别平行的四边形叫做平行四边形。 强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的`定义是两组对边分别平行的四边形。 提问: ①生活中你见过这样的图形吗? 它们的外形像什么? ②这些图形有几条边?几个角?是什么图形? ③这几个四边形有边有什么特点? ④它是平行四边形吗? ⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么? 只有一组对边平行的四边形叫做梯形。 5.现在你有什么问题吗? 长方形和正方形是平行四边形吗?为什么? 6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗? 教学内容: 义务教育课程标准实验教科书苏教版一年级下册19~21页。 教材简析: 1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。 2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的数学思维。 3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。 教学目标: 1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。 2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。 3.使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。 教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。 教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。 学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。 教学过程: 一、游戏激趣,创设情境 小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗? 二、动手操作,探索新知 1.折一折,认识三角形 (1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。) (2)展示成果。 哪位小朋友愿意上来说一说你是怎样折的? ①对折成两个完全一样的长方形。(这是我们已经认识的) ②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形) ③让所有小朋友用正方形纸折出两个完全一样的三角形。用小手摸一摸折出的三角形的面,再沿着这个三角形的边画一画,然后拿走折纸剩下△,让学生闭上眼睛想一想三角形的样子,并用手书空画出来。 [评析:让学生建立图形表象是教学的重点,教者通过折、摸、画、想、手书空画等系列活动,使学生对三角形有了初步的空间表象,可谓水到渠成。] (3)认识不同形状的三角形。 分别出示锐角三角形、直角三角形、钝角三角形、等腰三角形、等边三角形,让学生认一认,说明这些都叫三角形,让学生记住它们的样子。 (4)认识生活中的三角形。 在我们的生活中有哪些物体的面是三角形的? 同桌互相说一说,然后在全班交流。当学生说到红领巾、三角尺等身边有的物体时,让学生摸着红领巾、三角尺的面说:红领巾的面是三角形的,三角尺的面是三角形的。 (5)在钉字板上围三角形。 你们知道了身边有许多物体的面是三角形的,你们能在钉字板上围出一个三角形吗?各自围一围,同桌相互展示(如有困难,相互帮助)。然后在全班展示出不同形状的三角形。 (6)摆三角形。 你们能用6根同样长的小棒摆出一个三角形吗?摆好后小组相互评一评,推选出优秀代表展示。 (7)我们能用正方形纸对折成两个一样的三角形,一张长方形的纸,你也能折成的两个完全一样的三角形吗?拿出长方形纸折一折,比一比谁最聪明。 [评析:学生初步认识三角形后,让学生了解生活中也有三角形的存在,激发学生学习三角形的兴趣,再让学生在钉子板上围三角形、用小棒摆三角形、用长方形纸折三角形,既体现了具体到抽象的认知规律,又能循序渐进、层层深入地让学生认知三角形,了解三角形。] 2.剪一剪、拼一拼,认识平行四边形 (1)请小朋友们用剪刀把折成两个完全一样的三角形剪下来(师生同剪)。 你能用剪下来的两个完全一样的.三角形拼出不一样的图形吗? 动手拼一拼,把拼成的不同图形贴在黑板上(可能拼出长方形、三角形、平行四边形)。 教师指着平行四边形问:你们认识它吗?它叫什么图形?让所有的小朋友都来拼一个平行四边形。 (2)出示各种平行四边形,让学生认一认,并沿着它们的边画在黑板上,让学生认一认,记一记它们的样子。 (3)找平行四边形。 出示楼梯图片,让学生找一找图中的平行四边形,并用小手指一指,再让全班小朋友打开课本22页,同桌互相找一找篱笆、扶手图片中的平行四边形,比一比看谁找得多。 (4)围平行四边形。 在钉子板上你们能围出平行四边形吗?动手围一围,同桌相互检查,相互帮助,再指名上台来围给大家看一看。 (5)摆平行四边形。 小朋友们围得真好,你们会用6根同样长的小棒摆出一个平行四边形吗?在书上第44页方格纸上画一画,选择几幅展示。 [评析:用学习三角形的方法学习平行四边形,有利于学生的知识迁移,起着潜移默化的作用,让学生主动探索新知,发展学生的思维能力。] 三、游戏巩固,拓展提高 1.想想做做第4题 用两个完全一样的三角形能拼成几个不同形状的平行四边形?动手拼一拼,展示不同形状的平行四边形。 2.想想做做第5题 先让学生自由拼一拼,也可以小组讨论,把不同拼法贴到黑板上,再让学生认一认,记一记。 四、全课总结,课外延伸 我们刚才拼出了许多形状的图形,下课后拼给同学看一看,回家后拼给爸爸妈妈看一看,好吗? [总评:本课始终以操作为主线,面向全体,全员参与,让学生通过操作思考,小组讨论,主动探索新知识,充分体现了以学生为本,教师为组织者、引导者和合作者,使学生在玩中学,学中玩。既活跃了学生的思维,又调动了他们学习的积极性和主动性。让学生动手、动脑、动口,多种感官参与,教师又以比比谁最聪明看谁找得多等激励性的语言,调动学生学习的兴趣,使每位学生在学习过程中都有不同程度的发展。] 教学目标: 1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力. 3.对学生进行辩诈唯物主义观点的启蒙教育. 教学重点: 理解公式并正确计算平行四边形的面积. 教学难点: 理解平行四边形面积公式的推导过程. 学具准备: 每个学生准备一个平行四边形。 教学过程: 一、导入新课。 1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形? 2.好,下面谁来说一说你找到了哪些学过的图形? 3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的`面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。 二、民主导学 (一)、数方格法 用展示台出示方格图 1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米) 2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。 3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么? 小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形? 【回顾与思考】: 活动一: 准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形. (1)你得到了怎样的四边形?与同伴交流一下 (2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么? (3)平行四边形的定义: 的四边形叫做平行四边形. 平行四边形 连成的线段叫做对角线 如图,四边形ABCD是平行四边形, 记作” ” 活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么? (2)平行四边形的性质:平行四边形的对边 平行四边形的对角 几何语言: ∵四边形ABCD是平行四边形(已知) ∴AB= ,BC= ( ) ∠A = ,∠B = ( ) 【知识应用】: 1. □ABCD中,AB=3,BC=5,则AD= CD= 。 2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。 3. 如图:四边形ABCD是平行四边形。 (1)边AB、BC的长度 (2)求∠D、∠C度数。 【当堂反馈(小测)】: 1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______. 2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.; 3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______. 4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______. 5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。 6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数 【巩固提升】: 1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。 2、在□ABCD中,AB=3,BC=4,则□ABCD的`周长等于_______。 3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。 4、 在□ABCD中,∠A=65°,则∠D的度数是 ( ) A. 105° B. 115° C. 125° D. 65° 5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( ) A. 80° B. 90° C. 100° D. 110° 6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A、88°,108°,88°B、88°,104°,108° C、88°,92°,88° D、88°,92°,92° 7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( ) A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1 8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。 9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数 10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到? 教学目标 知识与能力: 1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法. 2.理解平行四边形的另一种判定方法,并学会简单运用. 过程与方法: 1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识. 2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力. 情感、态度与价值观: 通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情. 教学方法 启发诱导式 教具 三角尺 教学重点 平行四边形判定方法的探究、运用. 教学难点 对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用 教学过程: 第一环节 复习引入: 问题1: 1.平行四边形的定义是什么?它有什么作用? 2.判定四边形是平行四边形的方法有哪些? (1)两组对边分别平行的四边形是平行四边形. (2)一组对边平行且相等的四边形是平行四边形. (3)两条对角线互相平分的`四边形是平行四边形. 第二环节 探索活动 活动: 工具:两对长度分别相等的木条。 动手:能否在平面内用这四根笔摆成一个平行四边形? 思考1.1:你能说明你所摆出的四边形是平行四边形吗? 已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形. 思考1.2:以上活动事实,能用文字语言表达吗? 学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到: (1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形. (2)通过观察、实验、猜想到: 两组对边分别相等的四边形是平行四边形. 在此活动中,教师应重点关注: (1)学生在拼四边形时,能否将相等两木条作为四边形的对边; (2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形; (3)学生能否通过独立思考、小组合作得出正确的证明思路. 第三环节 巩固练习 例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么? 八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段? 随堂练习 1.判断下列说法是否正确 (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( ) (2)两组对角都相等的四边形是平行四边形 ( ) (3)一组对边平行且一组对角相等的四边形是平行四边形 ( ) (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( ) 2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么? 3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由. 4.如图:AD是ΔABC的边BC边上的中线. (1)画图:延长AD到点E,使DE=AD,连接BE,CE; (2)判断四边形ABEC的形状,并说明理由. 第四环节 小结: 师生共同小结,主要围绕下列几个问题: (1)判定一个四边形是平行四边形的方法有哪几种? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发? (3)平行四边形判定的应用 集备意见 个案补充 一 教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二 重点、难点 1.重点:平行四边形的判定方法及应用. 2.难点:平行四边形的判定定理与性质定理的灵活应用. 3.难点的突破方法: 平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的. (1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明. (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意: ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充; ②本节课只介绍前两个判定方法. (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法. 然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件. 在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力. (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求. (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题. (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识. 三 例题的意图分析 本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的'性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由. 四 课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的? 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗? 让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨: (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗? (2)你怎样验证你搭建的四边形一定是平行四边形? (3)你能说出你的做法及其道理吗? (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗? (5)你还能找出其他方法吗? 从探究中得到: 平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。 平行四边形判定方法2 对角线互相平分的四边形是平行四边形 【平行四边形教案】相关文章: 平行四边形教案02-19 平行四边形教案优秀05-08 《平行四边形的认识》教案07-09 《平行四边形的面积》教案06-23 平行四边形的认识教案07-30 平行四边形的面积教案06-18 平行四边形面积教案07-26 平行四边形面积教案优秀05-08 《平行四边形的认识》教案最新11-13 平行四边形教案(精选10篇)10-22平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)
平行四边形教案 篇8
平行四边形教案 篇9