平行四边形教案

时间:2024-10-17 10:05:21 教案 我要投稿

精选平行四边形教案模板集锦10篇

  作为一位杰出的老师,总归要编写教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?以下是小编帮大家整理的平行四边形教案10篇,仅供参考,欢迎大家阅读。

精选平行四边形教案模板集锦10篇

平行四边形教案 篇1

  【教学目标】

  1、知识与技能:

  探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。

  2、过程与方法:

  经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。

  3、情感态度与价值观:

  在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。

  【教学重点】:

  探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。

  【教学难点】:

  发展合情推理及逻辑推理能力

  【教学方法】:

  启发诱导法,探索分析法

  【教具准备】:多媒体课件

  【教学过程设计】

  第一环节回顾思考,引入新课

  什么叫平行四边形?

  平行四边形都有哪些性质?

  利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?

  [学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.

  [教学内容]教师乘机引出课题,明确学习任务.

  第二环节探索发现,应用深化

  1、做一做:(电脑显示P100“做一做”的内容)

  如图4-2,□ABCD的两条对角线AC,BD相交于点O,

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)能设法验证你的猜想吗?

  [教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.

  2、观察、讨论:(小组交流)

  通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。

  [教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.

  结论:平行四边形的对角线互相平分。

  [教师活动]“实验都是有误差的,我们能否对此进行理论证明?”

  [学生活动]此问题难度不大.

  [教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.

  活动二

  刚才财主巴依提出的问题你能解决吗?

  学生口述过程,教师最后给出规范的解题过程。

  练一练:

  财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?

  [教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.

  活动三

  电脑显示P101关于铁轨的图片

  提出问题:“想一想”

  已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,

  (1)线段AC,BD所在直线有什么样的位置关系?

  (2)比较线段AC,BD的长。

  引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。

  (让学生进一步感知生活中处处有数学)

  A.(学生思考、交流)

  B.(师生归纳)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四边形ACDB是平行四边形

  →AC=BD

  归纳:

  若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。

  即平行线间的.距离相等。

  [议一议]:

  举你能举出反映“平行线之间的垂直段处处相等实例吗”?

  活动目的:

  通过生活中的实例的应用,深化对知识的理解。

  第三环节巩固反馈,总结提高

  1、说一说下列说法正确吗

  ①平行四边形是轴对称图形()

  ②平行四边形的边相等()

  ③平行线间的线段相等()

  ④平行四边形的对角线互相平分()

  2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=

  3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为

  4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?

  5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  第四环节评价反思,目标回顾

  活动内容:

  本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?

  [布置作业]:

  P102习题4.21,2,3

  探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF

平行四边形教案 篇2

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的`定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

平行四边形教案 篇3

  教材分析

  “平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础

  学情分析

  1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

  2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标

  1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

  2.过程与方法目标:

  (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

  (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

  3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  教学重点和难点

  重点:理解掌握平行四边形的面积计算公式,并能正确运用。

  难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学过程

  (一)情境引入,以旧探新

  这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

  这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

  为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)

  (二)自主探究

  方法一:用数方格的方法求平行四边形的面积

  以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

  1.用方格纸制作成的平行四边形放在边长是1米的.方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

  根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

  2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

  (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

  (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

  (三)动手操作,验证猜想,得出结论

  方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

  1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

  (2)学生实验操作,教师巡视指导。

  3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

  (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

  (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

  (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

  (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

  4.全班交流推导公式:

  (1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

  (2)有没有不同的剪拼方法?(继续请同学演示)。

  研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

  (3)板书平行四边形面积推导过程

  (4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah

  三、运用公式,解决实际问题

  知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

  1.出示书上82页的1题,请大家做一做。

  2.汇报交流:谁来说一说你是怎么做的?

  3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

  四、巩固练习

  1、试一试

  计算下列平行四边形的面积,与同学说说你的方法。

  35cm 20dm 4.8m

  26cm 28dm 5m

  公式: 公式: 公式:

  列式: 列式: 列式:

  2、我能填得准。

  (1)平行四边形的面积公式用字母表示为( )。

  (2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。

  五、课堂总结

  反思一下刚才我们的学习过程,你有什么收获?

平行四边形教案 篇4

  教学内容:

  书本第43—45页的例题,“试一试”和“想想做做”。

  教学目标:

  1、使学生在具体的活动中认识平行四边形,知道它的基本特征,能正确判断平行四边形;认识平行四边形的高和底,能正确测量和画出它的高。

  2、使学生在观察、操作、比较、判断等活动中,经历探索平行四边形的基本特征的过程,进一步积累认识图形的经验,发展空间观念。

  3、使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,增强认识平面图形的兴趣。

  教学重、难点:

  认识平行四边形的特征,画平行四边形的高。

  教学准备:

  课件、每组准备小棒、钉子板、方格纸、直尺、三角尺

  总课时:

  28课时

  教学过程:

  一、生活引入,形成表象

  1、教师出示生活情境图,提问:在这些图片中,都有一个共同的平面图形,是什么?(平行四边形)你能找到吗?

  指名学生指一指,课件演示。

  2、师:生活中,你还在哪些地方能看到平行四边形?

  二、合作交流,探究新知

  (一)探究平行四边形的特征

  1、小组合作,制作平行四边形

  师:你能想办法做出一个平行四边形吗?

  提出要求:每个同学在小组学具袋中,任选一种材料制作一个平行四边形,做完之后,再和小组内的同学说一说你的制作方法?

  汇报交流(让学生依次在投影上演示,并介绍制作过程)

  2、对比猜测平行四边形特征

  师:同学们用不同的方法制作了许多大小不一的平行四边形,那平行四边形有什么特征呢?谁来猜测一下?

  学生猜测,教师板书或板贴(并在后面打“?”)

  3、小组探究,验证平行四边形的特征

  师:同学们的猜测无外乎两个方面,一方面是平行四边形边的特点,一方面平行四边形角的特点。(教师同时板贴将学生的猜测进行归类)那么就请同学们拿出你们手中的平行四边形,小组合作,想办法验证黑板上的一点或几点猜测。

  学生小组活动,教师巡视指导。

  汇报交流总结:平行四边形两组对边分别平行且相等,两组对角分别相等,内角和是360度。

  4、判断巩固:想想做做第1题,并让学生说说第二图形不是平行四边形的原因。

  (二)自主学习,认识底、高

  1、出示一张平行四边形的图,提出:你能量出这个平行四边形上下两条边间的距离吗?拿出手中的作业纸,先用虚线画出表示这组对边距离的线段,再测量。

  学生自己尝试后交流。教师指导明确“平行线之间的垂直线段就是平行线之间的距离”。指出这条垂直线段是这个平行四边形的一条高,这是它的底。标出高和底。

  2、教师平移此线段,提问是不是平行四边形这个底上的高?有多少条?

  3、什么是平行四边形的高?什么是它的底呢?打开书44页自学例题中的内容。

  指名汇报,通过自学,你知道了什么?

  4、出示试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?在书上完成。

  汇报后,师指最后一个图形的另外一组底,提问:如果以这条边作底,这个还是它的高吗?为什么?

  师小结:平行四边形有两组相对应的底和高。

  5、完成想想做做5,先指一指平行四边形的底,再画出这条底边上的高。如果有错误,让学生说说错在哪里。然后让学生说说做平行四边形的'高需要注意些什么?(底和高要对应,高画成虚线,画上直角标记)

  问:这节课咱们研究了哪种平面图形?(板书课题:认识平行四边形)你学到了哪些知识?关于平行四边形你还想了解哪些知识?

  三、实践体验,深化特性

  1、想想做做4。师:你能把一张平行四边形纸剪成两部分,再拼成一个长方形吗?先自己试一试,再在小组里交流你是怎么剪拼的。

  指名汇报,你是怎样剪的?谁来看着这个长方形,说说它的特征是什么?

  2、想想做做6。刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?

  出示想想做做6的几个步骤。让学生一步步操作,最后小组里观察讨论:长方形和平行四边形的相同点与不同点。

  3、出示集合图,指出:如果把平行四边形看做一个整体的话,长方形只是其中的一小部分。长方形是特殊的平行四边形。

  4、小结。

  教师:出示平行四边形演示变化过程,让学生观察,平行四边形的形状改变了,但是什么没有改变?指出平行四边形不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。请同学看书上P45页“你知道吗?”

  提问:说一说,生活中平行四边形的这种特点在哪些地方有应用?大家课后做个有心人,搜集相关的资料吧。

  四、全课总结师:通过这节课的学习你有哪些收获?

平行四边形教案 篇5

  学习目标:

  1、理解并掌握平行四边形的定义

  2、掌握平行四边形的性质定理1及性质定理2

  3、提高综合运用知识的能力

  预习指导:

  1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。

  2、____________________________________是平行四边形。

  3、平行四边形的性质是:_________________________________________.

  学习过程:

  一、学习新知

  1、平行四边形的定义

  (1)定义:________________ ________________________叫做平行四边形。

  (2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

  (3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,

  反过来,平行四边形就一定具有性质。

  (4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.

  2、平行四边形的性质

  平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

  已知:如图 ABCD,

  求证:AB=CD,CB=AD.

  分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.

  证明:

  总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。

  在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。

  证明:

  通过上面的证明,我们得到了:

  平行四边形的性质定理1是_______________________________________.

  平行四边形的性质定理2是_______________________________________.

  二、应用举例:

  例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。

  例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的`度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。

  三、随堂练习

  1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。

  2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。

  四、课堂小结 :

  1、平行四边形的概念。

  2、平行四边形的性质定理及其应用。

  五、当堂检测

  1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).

  (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是

  2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,

  EF与GH相交与点O,那么图中的平行四边形一共有( ).

  (A)4个 (B)5个 (C)8个 (D)9个

  3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

平行四边形教案 篇6

  教学目标:

  (1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。

  (2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。

  教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学准备:教具、投影。

  教学过程:

  一、复习准备:

  1.平行四边形、三角形、梯形的概念。

  2.平行四边形、三角形的性质。

  3.各图形的对称情况。

  4.图形的.大小用面积来表示。 (引人新课)

  二、新授

  1.投影,并观察,填书本P1的空格

  2.操作:用割补法把平行四边形拼成长方形。

  3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?

  4.得出:

  长方形的面积= 长 × 宽

  平行四边形的面积=( )×( )

  5.怎样计算下面图形的面积?

平行四边形教案 篇7

  【当堂检测】

  1.(20xx 年永州市).下列命题是假命题的是( )

  A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.

  C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形.

  2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )

  A. B. C. D.都不对

  3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的'周长为( )

  A. B. C. D.

  4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .

  (1)求 ∶ 的值;

  (2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;

  (3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.

平行四边形教案 篇8

  一、教学目标

  经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。

  二、教材分析

  本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

  三、教学重难点

  重点:

  探索并掌握平行四边形的判别条件。

  难点:

  对平行四边形判别条件的理解及说理的基本方法的`掌握。

  四、教学准备

  两根长40厘米 和两根长30厘米的木条

  五、教学设计

  首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。

  六、教学过程

  1、复习平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)

  2、小组活动

  用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。 (通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。 平行四边形的判定定理——两组对边相等的四边形是平行四边形。

  3、课本91页的“做一做” (其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)

  4、“议一议”

  问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。 (先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)

  问题2、要判别一个四边形是平行四边形,你有哪些方法?

  5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固

平行四边形教案 篇9

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  一、导入新课

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  您现在正在阅读的'五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽 平行四边形的面积=底高

  S=ah S=ah或S=ah

平行四边形教案 篇10

  【设计理念】

  本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

  【教学内容】

  《义务教育教科书》人教版数学课本五年级上册87——88页。

  【教材、学情分析】

  平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

  学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

  【教学目标】

  1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

  2、在探究的过程中感悟“转化”的数学思想和方法。

  3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

  4、引领学生回顾反思,获得基本的数学活动经验。

  【教学重点】

  推导平行四边形面积计算公式。应用公式解决实际问题。

  【教学难点】

  理解平行四边形的面积计算公式的推导过程。

  【教学准备】

  平行四边形纸片若干,直尺、剪刀、。

  【教学过程】

  一、创设情境,激发兴趣。

  讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

  【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

  二、组织探究,推导公式。

  1、联系旧知,做出猜想。

  看到这个题目,你想到了我们学过哪些有关面积的知识?

  大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

  【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

  2、初步验证,感悟方法。

  根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

  引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

  学生数方格并来验证自己的猜想。

  【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

  3、剪拼转化,发现规律。

  除了数方格,我们还能用什么方法来验证呢?(学生思考)

  能否将平行四边形转化成我们学过的图形再来进行计算呢?

  (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

  (2)展示交流。(演示)

  【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

  4、观察比较,推导公式。

  剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  小结: 长方形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

  【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的'突出了教学重点。】

  5、展开想象,再次验证。

  是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

  学生先闭眼想象,再借助手中的工具加以验证。

  6、回顾反思,总结经验。

  回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

  把平行四边形转化成长方形面积。(剪拼—转化)

  然后找到转化前、后图形之间的联系。(寻找—联系)

  根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

  【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

  三、实践应用,解决问题。

  1、解决实际问题

  平行四边形花坛底是6米,高是4米,它的面积是多少?

  2、出示如下图

  算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

  4、现在你明白阿凡提是怎么打败巴依的了吗?

  引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

  思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

  【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

  四、总结全课,拓展延伸。

  转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

  通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

  【设计意图:试图把学生带入更加广阔的学习空间。】

  五、板书设计

  平行四边形的面积

  长 方 形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

【平行四边形教案】相关文章:

平行四边形教案02-19

平行四边形教案优秀05-08

《平行四边形的认识》教案07-09

《平行四边形的面积》教案06-23

平行四边形的认识教案07-30

平行四边形的面积教案06-18

平行四边形面积教案07-26

平行四边形面积教案优秀05-08

《平行四边形的认识》教案最新11-13

平行四边形教案(精选10篇)10-22