- 相关推荐
平行四边形教案三篇
作为一名老师,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?以下是小编收集整理的平行四边形教案3篇,希望对大家有所帮助。
平行四边形教案 篇1
四年级数学上册《平行四边形、梯形特征》教学设计教学目标:
1、学生理解平行四边形和梯形的概念及特征。
2、使学生了解学过的所有四边形之间的关系,并会用集合图表示。
3、通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。
4、通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。
教学重点:理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。
教学难点:理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。
教具准备:图形、剪子、七巧板。
教学过程:
一、创设情景 感知图形
1、出示校园图(70页)在我们美丽的校园中,你能找到那些四边形?
2、画出你喜欢的一个四边形。说一说什么样的图形是四边形?
展示学生画出的四边形,请学生标出它们的名称。
长方形 平行四边形
梯形 正方形
3、小组交流:从四边形的特点来看,四边形可以分成几类?学生讨论交流。
二、探究新知
1、归纳平行四边形和梯形的概念。
有什么特点的图形是平行四边形?(两组对边分别平行的四边形叫做平行四边形。)
强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。
提问:生活中你见过这样的`图形吗?它们的外形像什么?
这些图形有几条边?几个角?是什么图形?
这几个四边形有边有什么特点?
它是平行四边形吗?
你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?
只有一组对边平行的四边形叫做梯形。
5、现在你有什么问题吗?
长方形和正方形是平行四边形吗?为什么?
6、用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗?
7、判断:
长方形是特殊的平行四边形。( )
两个完全一样的梯形可以拼成一个平行四边形。( )
一个梯形中只有一组对边平行。( )
三、巩固练习。
1、在梯形里画两条线段,把它分割成三个三角形。你有几种画法?学生展示
2、七巧板拼一拼
用两块拼一个梯形
用三块拼一个梯形
用一套七巧板拼一个平行四边形
1、 下面的图形中有( )个大小不同的梯形。
2、 用两个完全一样的梯形,能拼成一个平行四边形吗?
把1张梯形纸剪一次,再拼成一个平行四边形。
拿一张长方行纸,不对折,剪一次,再拼出一个梯形。
四、课堂小结:通过这节课的学习,你有何体会和收获?
五、作业:
1、把一个平行四边形剪成两个图形,然后拼成一个三角形,这个三角是什么三角形?有几种剪拼的方法?
2、把一张平行四边形的纸剪一下,分成两个梯形,有多少种剪法?
平行四边形教案 篇2
一、教材分析
1.教材的地位与作用
平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.
本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.
另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.
2.教学目标:
知识技能:理解并掌握平行四边形的.相关概念和性质,培养学生初步应用这些知识解决问题的能力.
数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.
解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.
情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.
3.教学重点、难点:
重点:理解并掌握平行四边形的概念及其性质.
难点:运用平移、旋转的图形变换思想探究平行四边形的性质.
4.教材处理:
基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.
首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.
然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.
最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.
总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.
二.教学方法与手段
本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.
平行四边形教案 篇3
教学目标
1.进一步认识平行四边形是中心对称图形。
2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.平行四边形的特征:对边( ),对角( )。
2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的.应用。)
例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题