反比例函数教案

时间:2024-07-27 01:19:01 教案 我要投稿

反比例函数教案

  作为一名教师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?以下是小编为大家收集的反比例函数教案,希望能够帮助到大家。

反比例函数教案

反比例函数教案1

  一、教学设计思路

  1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

  2. 对教材的分析

  (1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

  (2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

  (3) 难点:探索并掌握反比例函数的主要性质。

  二、教学过程

  (一)作图象,试比较

  1、提问:

  (1)=4/x 是什么函数?你会作反比例函数的图象吗?

  (2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。

  2、按照上述方法作 =—4/x 的`图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

  (二)细观察,找规律

  1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

  2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

  3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

  (1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

  (2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

  (三)用规律,练一练

  1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。

  2、判断一位同学画的反比例函数的图象是否正确。

  3、下列函数中,其图象位于第一、三象限

  的有哪几个?在其图象所在象限内,的值随x的增大而增

  大的有哪几个?

  (四)想一想,作小结

  (五)作业:课本137页第1题、141页第2题

反比例函数教案2

  第一课时

  教学设计思想

  本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  教学目标

  知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题。

  2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

  过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  2.体会数学与现实生活的`紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

  情感态度与价值观

  体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

  教学重难点

  重点:掌握从实际问题中建构反比例函数模型。

  难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

  教学方法

  启发引导、合作探究

  教学媒体

  课件

  教学过程设计

  (一)创设问题情境,引入新课

  [师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

  [生]是为了应用。

  [师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

  问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数教案3

  教学过程设计

  一、创设情境 引入课题

  活动1

  问题:

  你们还记得一次函数图象与性质吗?

  设计意图

  通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

  师生形为:

  教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。

  二、类比联想 探究交流

  活动2

  问题:

  例2 画出反比例函数y= 与y=- 的图象。

  (教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)

  设计意图:

  通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

  师生形为:

  学生可以先自己动手画图,相互观摩。

  在此活动中,教师应重点关注:

  1学生能否顺利进行三种表示方法的相互转换:

  2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;

  3在动手作图的过程中,能否勤于动手,乐于探索。

  比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?

  (由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)

  设计意图:

  学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

  师生形为:

  学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

  教师参与到学生的讨论中去,积极引导。

  (三)探索比较 发现规律

  活动3

  问题:

  观察反比例函数y= 与y=- 的图象。

  你能发现它们的共同特征以及不同点吗?

  每个函数的图象分别位于哪几个象限?

  在每一个象限内,y随x的变化如何变化?

  由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:

  形状: 反比例函数的图象是由两支双曲线组成的'.因此称反比例函数的图象为双曲线;

  位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;

  任意一组变量的乘积是一个定值,即xy=k.

  (注意:双曲线的两个分支都不会与x轴,y轴相交。)

  学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.

  四、 运用新知 拓展训练

  设计意图:

  拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的.

  师生形为:

  学生独立思考完成。

  教师巡视,引导学困生完成任务。

  五、归纳总结 布置作业

  问题:

  本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?

反比例函数教案4

  教学目标:

  1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  2、能根据实际问题中的条件确定反比例函数的解析式。

  3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

  教学重点、难点:

  重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  难点:根据实际问题中的条件确定反比例函数的解析式

  教学过程:

  一、情景创设:

  为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

  (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的`取值范围是:_______,药物燃烧后关于x的函数关系式为_______.

  (2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

  (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

  二、新授:

  例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

  (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

  (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

  (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

  例2某自来水公司计划新建一个容积为 的长方形蓄水池。

  (1)蓄水池的底部S 与其深度 有怎样的函数关系?

  (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

  (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

  三、课堂练习

  1、一定质量的氧气,它的密度 (g/3)是它的体积V( 3) 的反比例函数, 当V=103时,=1.43g/3. (1)求与V的函数关系式;(2)求当V=23时求氧气的密度.

  2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

  (1)求与x之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]

  3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.

  四、小结

  五、作业

  30.3——1、2、3

反比例函数教案5

  一、教学目标

  1、利用反比例函数的知识分析、解决实际问题

  2、渗透数形结合思想,提高学生用函数观点解决问题的能力

  二、重点、难点

  1、重点:利用反比例函数的知识分析、解决实际问题

  2、难点:分析实际问题中的数量关系,正确写出函数解析式

  3、难点的突破方法:

  用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

  三、例题的意图分析

  教材第57页的`例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

  教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

  补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

反比例函数教案6

  教学重点:

  理解和领会反比例函数的概念.

  教学难点:

  领悟反比例的概念.

  教学过程:

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的`函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

反比例函数教案7

  [教学目标]

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的'部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________

  3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

反比例函数教案8

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的.长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

反比例函数教案9

  教学设计思路

  由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。

  教学目标

  知识与技能

  1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。

  过程与方法

  1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。

  2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。

  情感态度与价值观

  1.认识到数学知识是有联系的,逐步感受数学内容的`系统性;

  2.通过分组讨论,培养合作交流意识和探索精神。

  教学重点和难点

  理解和领会反比例函数的概念。

  教学难点

  领悟反比例函数的概念。

  教学方法

  启发引导、分组讨论

  课时安排

  1课时

  教学媒体

  课件

  教学过程设计

  复习引入

  1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?

  2.在上一学段,我们研究了现实生活中成反比例的两个量

反比例函数教案10

  教学目标

  (1)进一步体验现实生活与反比例函数的关系。

  (2)能解决确定反比例函数中常数志值的实际问题。

  (3)会处理涉及不等关系的实际问题。

  (4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。

  难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程

  1、引入新课

  上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨

  2、提出问题、解决问题

  (1)审完题后,你的切入点是什么,

  由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t

  (2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)

  (3)明确了问题的区别,那么第二问怎样解决

  根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t

  案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0

  3、巩固练习

  例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。

  (1)蓄水池的'容积是多少

  (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。

  (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少

  (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空

  这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。

  4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论:

  (1)学习了反比例函数的应用。

  (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。

  (3)求“至少”“最多”值时,可根据函数的性质得到。

  5、作业设计①必做题:

  (1)课本第61页第2题。

  (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页

反比例函数教案11

  教学目标

  (一)教学知识点

  1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  (二)能力训练要求

  结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

  (三)情感与价值观要求

  结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

  教学重点

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  教学难点

  领会反比例函数的意义,理解反比例函数的概念.

  教学方法

  教师引导学生进行归纳.

  教具准备

  投影片两张

  第一张:(记作5.1A)

  第二张:(记作5.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

  Ⅱ.新课讲解

  [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

  1.复习函数的定义

  [师]大家还记得函数的定义吗?

  [生]记得.

  在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

  [师]大家能举出实例吗?

  [生]可以.

  例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

  等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

  [师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

  2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

  [师]请看下面的问题.

  电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  请大家交流后回答.

  [生](1)能用含有R的代数式表示I.

  由IR=220,得I= .

  (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

  从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.

  (3)变量I是R的函数.

  由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.

  [师]这位同学回答的非常精彩,下面大家再思考一个问题.

  舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的'?请大家互相交流后回答.

  [生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

  投影片:(5.1A)

  京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

  [生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

  [师]从上面的两个例题得出关系式

  I= 和t= .

  它们是函数吗?它们是正比例函数吗?是一次函数吗?

  [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.

  [师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

  [生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).

  [师]很好.

  一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.

  从y= 中可知x作为分母,所以x不能为零.

  3.做一做

  投影片(5.1B)

  1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  3.y是x的反比例函数,下表给出了x与y的一些值:

  x-2-1

  13

  y

  2-1

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  [生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.

  [生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.

  [师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.

  [生]设反比例函数的表达式为

  y= .

  (1)当x=-1时,y=2;

  ∴k=-2.

  ∴表达式为y=- .

  (2)当x=-2时,y=1.

  当x=- 时,y=4;

  当x= 时,y=-4;

  当x=1时,y=-2.

  当x=3时,y=- ;

  当y= 时,x=-3;

  当y=-1时,x=2.

  因此表格中从左到右应填

  -3,1,4,-4,-2,2,- .

  Ⅲ.课堂练习

  随堂练习(P131)

  Ⅳ.课时小结

  本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

  Ⅴ.课后作业

  习题5.1

  Ⅵ.活动与探究

  已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

  分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.

  解:由题意可知y-1= =k(x+2).

  当x=1时,y=4.

  所以3k=4-1,

  k=1.

  即表达式为y-1=x+2,

  y=x+3.

  由上可知y是x的一次函数.

  板书设计

反比例函数教案12

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的`能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

反比例函数教案13

  教学目标

  使学生对反比例函数和反比例函数的图象意义加深理解.

  教学重难点

  重点:反比例函数的图象.

  难点:利用反比例函数的图象解题.

  教学过程

  一、情境创设

  反比例函数

  解析式y=kx(k为常数,k≠0)

  图象形状双曲线(以原点为对称中心)

  k>0位置一、三象限

  增减性每一象限内,y随x的增大而减小

  k<0位置二、四象限

  增减性每一象限内,y随x的.增大而增大

  二、例题讲解

  例1.如图是反比例函数的图象的一支。

  (1)函数图象的另一支在第几象限?试求常数m的取值范围;

  (2)点都在这个反比例函数的图象上,比较、、的大小

  例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,

  求:(1)一次函数的解析式;

  (2)△AOB的面积.

  四、课堂练习

  课本P70练习1、2题

  五、课堂小结

  1.反比例函数的图象.

  2.反比例函数的性质.

  六、课堂作业

  课本P72/第5题

反比例函数教案14

  教学目标

  (一)教学知识点

  1.进一步巩固作反比例函数的图象.

  2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.

  (二)能力训练要求

  1.通过画反比例函数图象,训练学生的作图能力.

  2.通过从图象中获取信息,训练学生的识图能力.

  3.通过对图象性质的研究,训练学生的探索能力和语言组织能力.

  (三)情感与价值观要求

  让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论,不仅使他们记忆犹新,还能建立自信心.由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊.

  教学重点

  通过观察图象,归纳概括反比例函数图象的共同特征,探索反比例函数的.主要性质.

  教学难点

  从反比例函数的图象中归纳总结反比例函数的主要性质.

  教学方法

  教师引导学生类推归纳概括学习法.

  教具准备

  投影片三张

  第一张:(记作5.2.2A)

  第二张:(记作5.2.2B)

  第三张:(记作5.2.2C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k0时,函数图象的两个分支分别位于第一、三象限内;当k0时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数

反比例函数教案15

  教学目标:

  1、知识与能力目标:

  (1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

  (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

  2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

  3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

  教学重点和难点

  重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

  难点:反比例函数性质的灵活运用。数形结合思想的应用。

  教学方法:

  探究——讨论——交流——总结

  教学媒体:

  多媒体课件。

  教学过程:

  一、知识梳理:

  同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

  课件展示:

  1、反比例函数的意义

  2、反比例函数的图象与性质

  3、利用反比例函数解决实际问题

  二、合作交流、解读探究

  (一)与反比例函数的`意义有关的问题

  课件展示:

  忆一忆:什么是反比例函数?

  要求学生说出反比例函数的意义及其等价形式

  巩固练习:课件展示:

  1、下列函数中,哪些是反比例函数?

  (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

  2、写出下列问题中的函数关系式,并指出它们是什么函数?

  ⑴当路程s一定时,时间t与平均速度v之间的关系。

  ⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

  3、若y=为反比例函数,则m=______

  4、若y=(m-1)为反比例函数,则m=______ 。

  (二)运用反比例函数的图象与性质解决问题

  1、反比例函数的图象是

  2、图象性质见下表(课件展示):

  3、做一做(课件展示)

  (1)函数y=的图象在第______象限,当x<0时,y随x的增大而______ 。

  (2)双曲线y=经过点(-3,______)。

  (3)函数y=的图象在二、四象限内,m的取值范围是______ 。

  (4)若双曲线经过点(-3,2),则其解析式是______.

  (5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。

  (三)综合运用(课件展示)

  一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围

  三、随堂练习

  见课件

  四、小结

  1、反比例函数的意义

  2、反比例函数的图象与性质

  五、作业:

  配套练习22页21、22题

《反比例函数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深写手 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【反比例函数教案】相关文章:

反比例函数教案03-23

反比例函数说课稿08-07

反比例函数教学反思05-15

(精品)反比例函数教学反思05-15

反比例函数教学反思(实用)06-18

(经典)反比例函数教学反思15篇05-15

反比例函数教学反思(通用15篇)07-26

反比例函数教学反思15篇(推荐)05-15

《反比例》教案03-07

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

反比例函数教案

  作为一名教师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?以下是小编为大家收集的反比例函数教案,希望能够帮助到大家。

反比例函数教案

反比例函数教案1

  一、教学设计思路

  1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

  2. 对教材的分析

  (1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

  (2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

  (3) 难点:探索并掌握反比例函数的主要性质。

  二、教学过程

  (一)作图象,试比较

  1、提问:

  (1)=4/x 是什么函数?你会作反比例函数的图象吗?

  (2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。

  2、按照上述方法作 =—4/x 的`图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

  (二)细观察,找规律

  1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

  2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

  3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

  (1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

  (2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

  (三)用规律,练一练

  1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。

  2、判断一位同学画的反比例函数的图象是否正确。

  3、下列函数中,其图象位于第一、三象限

  的有哪几个?在其图象所在象限内,的值随x的增大而增

  大的有哪几个?

  (四)想一想,作小结

  (五)作业:课本137页第1题、141页第2题

反比例函数教案2

  第一课时

  教学设计思想

  本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  教学目标

  知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题。

  2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

  过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  2.体会数学与现实生活的`紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

  情感态度与价值观

  体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

  教学重难点

  重点:掌握从实际问题中建构反比例函数模型。

  难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

  教学方法

  启发引导、合作探究

  教学媒体

  课件

  教学过程设计

  (一)创设问题情境,引入新课

  [师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

  [生]是为了应用。

  [师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

  问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数教案3

  教学过程设计

  一、创设情境 引入课题

  活动1

  问题:

  你们还记得一次函数图象与性质吗?

  设计意图

  通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

  师生形为:

  教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。

  二、类比联想 探究交流

  活动2

  问题:

  例2 画出反比例函数y= 与y=- 的图象。

  (教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)

  设计意图:

  通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

  师生形为:

  学生可以先自己动手画图,相互观摩。

  在此活动中,教师应重点关注:

  1学生能否顺利进行三种表示方法的相互转换:

  2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;

  3在动手作图的过程中,能否勤于动手,乐于探索。

  比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?

  (由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)

  设计意图:

  学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

  师生形为:

  学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

  教师参与到学生的讨论中去,积极引导。

  (三)探索比较 发现规律

  活动3

  问题:

  观察反比例函数y= 与y=- 的图象。

  你能发现它们的共同特征以及不同点吗?

  每个函数的图象分别位于哪几个象限?

  在每一个象限内,y随x的变化如何变化?

  由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:

  形状: 反比例函数的图象是由两支双曲线组成的'.因此称反比例函数的图象为双曲线;

  位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;

  任意一组变量的乘积是一个定值,即xy=k.

  (注意:双曲线的两个分支都不会与x轴,y轴相交。)

  学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.

  四、 运用新知 拓展训练

  设计意图:

  拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的.

  师生形为:

  学生独立思考完成。

  教师巡视,引导学困生完成任务。

  五、归纳总结 布置作业

  问题:

  本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?

反比例函数教案4

  教学目标:

  1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  2、能根据实际问题中的条件确定反比例函数的解析式。

  3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

  教学重点、难点:

  重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  难点:根据实际问题中的条件确定反比例函数的解析式

  教学过程:

  一、情景创设:

  为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

  (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的`取值范围是:_______,药物燃烧后关于x的函数关系式为_______.

  (2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

  (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

  二、新授:

  例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

  (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

  (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

  (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

  例2某自来水公司计划新建一个容积为 的长方形蓄水池。

  (1)蓄水池的底部S 与其深度 有怎样的函数关系?

  (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

  (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

  三、课堂练习

  1、一定质量的氧气,它的密度 (g/3)是它的体积V( 3) 的反比例函数, 当V=103时,=1.43g/3. (1)求与V的函数关系式;(2)求当V=23时求氧气的密度.

  2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

  (1)求与x之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]

  3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.

  四、小结

  五、作业

  30.3——1、2、3

反比例函数教案5

  一、教学目标

  1、利用反比例函数的知识分析、解决实际问题

  2、渗透数形结合思想,提高学生用函数观点解决问题的能力

  二、重点、难点

  1、重点:利用反比例函数的知识分析、解决实际问题

  2、难点:分析实际问题中的数量关系,正确写出函数解析式

  3、难点的突破方法:

  用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

  三、例题的意图分析

  教材第57页的`例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

  教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

  补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

反比例函数教案6

  教学重点:

  理解和领会反比例函数的概念.

  教学难点:

  领悟反比例的概念.

  教学过程:

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的`函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

反比例函数教案7

  [教学目标]

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的'部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________

  3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

反比例函数教案8

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的.长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

反比例函数教案9

  教学设计思路

  由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。

  教学目标

  知识与技能

  1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。

  过程与方法

  1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。

  2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。

  情感态度与价值观

  1.认识到数学知识是有联系的,逐步感受数学内容的`系统性;

  2.通过分组讨论,培养合作交流意识和探索精神。

  教学重点和难点

  理解和领会反比例函数的概念。

  教学难点

  领悟反比例函数的概念。

  教学方法

  启发引导、分组讨论

  课时安排

  1课时

  教学媒体

  课件

  教学过程设计

  复习引入

  1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?

  2.在上一学段,我们研究了现实生活中成反比例的两个量

反比例函数教案10

  教学目标

  (1)进一步体验现实生活与反比例函数的关系。

  (2)能解决确定反比例函数中常数志值的实际问题。

  (3)会处理涉及不等关系的实际问题。

  (4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。

  难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程

  1、引入新课

  上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨

  2、提出问题、解决问题

  (1)审完题后,你的切入点是什么,

  由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t

  (2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)

  (3)明确了问题的区别,那么第二问怎样解决

  根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t

  案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0

  3、巩固练习

  例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。

  (1)蓄水池的'容积是多少

  (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。

  (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少

  (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空

  这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。

  4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论:

  (1)学习了反比例函数的应用。

  (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。

  (3)求“至少”“最多”值时,可根据函数的性质得到。

  5、作业设计①必做题:

  (1)课本第61页第2题。

  (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页

反比例函数教案11

  教学目标

  (一)教学知识点

  1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  (二)能力训练要求

  结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

  (三)情感与价值观要求

  结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

  教学重点

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  教学难点

  领会反比例函数的意义,理解反比例函数的概念.

  教学方法

  教师引导学生进行归纳.

  教具准备

  投影片两张

  第一张:(记作5.1A)

  第二张:(记作5.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

  Ⅱ.新课讲解

  [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

  1.复习函数的定义

  [师]大家还记得函数的定义吗?

  [生]记得.

  在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

  [师]大家能举出实例吗?

  [生]可以.

  例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

  等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

  [师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

  2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

  [师]请看下面的问题.

  电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  请大家交流后回答.

  [生](1)能用含有R的代数式表示I.

  由IR=220,得I= .

  (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

  从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.

  (3)变量I是R的函数.

  由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.

  [师]这位同学回答的非常精彩,下面大家再思考一个问题.

  舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的'?请大家互相交流后回答.

  [生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

  投影片:(5.1A)

  京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

  [生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

  [师]从上面的两个例题得出关系式

  I= 和t= .

  它们是函数吗?它们是正比例函数吗?是一次函数吗?

  [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.

  [师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

  [生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).

  [师]很好.

  一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.

  从y= 中可知x作为分母,所以x不能为零.

  3.做一做

  投影片(5.1B)

  1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  3.y是x的反比例函数,下表给出了x与y的一些值:

  x-2-1

  13

  y

  2-1

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  [生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.

  [生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.

  [师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.

  [生]设反比例函数的表达式为

  y= .

  (1)当x=-1时,y=2;

  ∴k=-2.

  ∴表达式为y=- .

  (2)当x=-2时,y=1.

  当x=- 时,y=4;

  当x= 时,y=-4;

  当x=1时,y=-2.

  当x=3时,y=- ;

  当y= 时,x=-3;

  当y=-1时,x=2.

  因此表格中从左到右应填

  -3,1,4,-4,-2,2,- .

  Ⅲ.课堂练习

  随堂练习(P131)

  Ⅳ.课时小结

  本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

  Ⅴ.课后作业

  习题5.1

  Ⅵ.活动与探究

  已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

  分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.

  解:由题意可知y-1= =k(x+2).

  当x=1时,y=4.

  所以3k=4-1,

  k=1.

  即表达式为y-1=x+2,

  y=x+3.

  由上可知y是x的一次函数.

  板书设计

反比例函数教案12

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的`能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

反比例函数教案13

  教学目标

  使学生对反比例函数和反比例函数的图象意义加深理解.

  教学重难点

  重点:反比例函数的图象.

  难点:利用反比例函数的图象解题.

  教学过程

  一、情境创设

  反比例函数

  解析式y=kx(k为常数,k≠0)

  图象形状双曲线(以原点为对称中心)

  k>0位置一、三象限

  增减性每一象限内,y随x的增大而减小

  k<0位置二、四象限

  增减性每一象限内,y随x的.增大而增大

  二、例题讲解

  例1.如图是反比例函数的图象的一支。

  (1)函数图象的另一支在第几象限?试求常数m的取值范围;

  (2)点都在这个反比例函数的图象上,比较、、的大小

  例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,

  求:(1)一次函数的解析式;

  (2)△AOB的面积.

  四、课堂练习

  课本P70练习1、2题

  五、课堂小结

  1.反比例函数的图象.

  2.反比例函数的性质.

  六、课堂作业

  课本P72/第5题

反比例函数教案14

  教学目标

  (一)教学知识点

  1.进一步巩固作反比例函数的图象.

  2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.

  (二)能力训练要求

  1.通过画反比例函数图象,训练学生的作图能力.

  2.通过从图象中获取信息,训练学生的识图能力.

  3.通过对图象性质的研究,训练学生的探索能力和语言组织能力.

  (三)情感与价值观要求

  让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论,不仅使他们记忆犹新,还能建立自信心.由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊.

  教学重点

  通过观察图象,归纳概括反比例函数图象的共同特征,探索反比例函数的.主要性质.

  教学难点

  从反比例函数的图象中归纳总结反比例函数的主要性质.

  教学方法

  教师引导学生类推归纳概括学习法.

  教具准备

  投影片三张

  第一张:(记作5.2.2A)

  第二张:(记作5.2.2B)

  第三张:(记作5.2.2C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k0时,函数图象的两个分支分别位于第一、三象限内;当k0时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数

反比例函数教案15

  教学目标:

  1、知识与能力目标:

  (1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

  (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

  2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

  3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

  教学重点和难点

  重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

  难点:反比例函数性质的灵活运用。数形结合思想的应用。

  教学方法:

  探究——讨论——交流——总结

  教学媒体:

  多媒体课件。

  教学过程:

  一、知识梳理:

  同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

  课件展示:

  1、反比例函数的意义

  2、反比例函数的图象与性质

  3、利用反比例函数解决实际问题

  二、合作交流、解读探究

  (一)与反比例函数的`意义有关的问题

  课件展示:

  忆一忆:什么是反比例函数?

  要求学生说出反比例函数的意义及其等价形式

  巩固练习:课件展示:

  1、下列函数中,哪些是反比例函数?

  (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

  2、写出下列问题中的函数关系式,并指出它们是什么函数?

  ⑴当路程s一定时,时间t与平均速度v之间的关系。

  ⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

  3、若y=为反比例函数,则m=______

  4、若y=(m-1)为反比例函数,则m=______ 。

  (二)运用反比例函数的图象与性质解决问题

  1、反比例函数的图象是

  2、图象性质见下表(课件展示):

  3、做一做(课件展示)

  (1)函数y=的图象在第______象限,当x<0时,y随x的增大而______ 。

  (2)双曲线y=经过点(-3,______)。

  (3)函数y=的图象在二、四象限内,m的取值范围是______ 。

  (4)若双曲线经过点(-3,2),则其解析式是______.

  (5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。

  (三)综合运用(课件展示)

  一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围

  三、随堂练习

  见课件

  四、小结

  1、反比例函数的意义

  2、反比例函数的图象与性质

  五、作业:

  配套练习22页21、22题