分数的意义教案

时间:2024-07-13 02:09:01 教案 我要投稿

分数的意义教案(集合15篇)

  作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?以下是小编整理的分数的意义教案,希望能够帮助到大家。

分数的意义教案(集合15篇)

分数的意义教案1

  教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  3、培养学生的应用意识。

  教学重难点

  1、理解归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  教学工具

  ppt

  教学过程

  一、激趣引入

  师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?

  课件出示唐僧、孙悟空、沙僧的图片

  师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?

  引出平均分,让学生列式:8÷4=2(张)

  总量÷份数=每份数

  二、探究新知

  1、老猪化得一张饼,如何分给4人呢?

  师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。

  把1个饼平均分给4个人,每个人分得多少个?

  师:这道题该怎样列式呢?(学生列式,师板书:1÷4)

  师:1÷4表示什么意思?

  生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。

  师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

  生:1/4个。(师板书)

  师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

  教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。

  师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?

  生:1/4个。

  师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。

  教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

  (课件出示例2)

  指名读题

  师:谁能列出算式?

  生:3÷4(师板书)

  师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

  小组操作,教师巡视指导。

  师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

  (小组边汇报,边演示)

  小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

  师:你能用一个式子表示一下吗?

  小组1:1÷4=1/4块。

  师:好。请接着汇报吧。

  小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

  师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

  师:还有没有和这组方法不同的?

  小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

  师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

  师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

  师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

  学生小组讨论

  生:我们发现,被除数就是分子,除数就是分母。

  师:你能试着表示出来吗?

  生:被除数÷除数=被除数/除数(师板书)

  师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

  生1:a÷b=a/b(师板书)

  生2:老师,我认为还要写上b≠0。

  师:为什么b≠0?

  生:因为b表示除数,除数不能为0。

  生:分数的`分母也不能等于0。

  师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

  师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

  学生观察算式,思考

  生:可以。比如3/4=3÷4。

  课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

  分数线相当于除号。

  师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

  请学生观察黑板算式,和同学讨论。

  学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

  三、巩固练习

  1、用分数表示下列算式的商

  (1)3÷2 = ( )

  (2)2÷9 = ( )

  (3)7÷8 = ( )

  (4)5÷12 = ( )

  (5)31÷5 = ( )

  (6)m÷n = ( )n≠0

  2、试一试

  ( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )

  3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

  4、填空

  9厘米=( )米59秒=( )分

  13分=( )时5时=( )日

  5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

  四、全课总结

分数的意义教案2

  教材分析:

  《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份可以用分数来表示。本节课重点是让学生理解不仅一个物体一个计量单位可用自然数1 来表示,许多物体看作的一个整体也可用自然数1 来表示,进而总结概括出分数的意义。

  教学目标:

  知识与技能:初步建立单位的概念,理解分数的意义以及分数单位的意义。

  能力与方法:通过主动学习探究,理解并形成分数的概念,培养学生的科学探究和实践能力。

  情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。

  教学重点和难点:

  教学重点:建立单位的概念,能从具体实例中理解分数的意义。

  教学难点:准确理解单位.

  教学方法:

  本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法。通过动手操作直观演示 让学生充分感知,整堂课层层推进、步步深入。课堂中教师力求教给学生探索知识的方法,在引导学生在获取知识的同时,让他们归纳总结。

  教学用具准备:

  多媒体课件,准备圆形纸,正方形纸、练习纸、小木棒等多种学具。

  教学过程:

  一、理解单位

  1、谈话交流引入

  教师板书,同学们老师在黑板上写的是几?今天我们就从这个小小的来开始展开学习这节课的内容。

  老师往这一站就可以用几来表示?除了可以表示一个人,还可以表示什么?(生答:一台电脑、一块黑板、一张桌子等等)

  这个问题太简单了,一年级的孩子都知道,但现在我们是五年级的同学了。除了可以表示一个人、一台电脑、一块黑板等等,还可以有其它的表示方法吗?(引导学生说出还可以表示一群人、一堆物品、一排桌子等等)

  演示:课件出示生活中的物体,深入理解一个物体和一些物体都可以用来表示,加深对整体单位的理解。

  比较:现在的和以前的还是一样的意思吗?(现在的不但可以表示一个个物体,还可以表示一堆物体、一群物体等等。)

  结论:通过我们刚才的谈话和观察我们发现一个物体或是一些物体都可以看做一个整体,都可以用来表示。在数学中我们通常把这个广义的叫做单位。

  2、深入理解单位

  课件出示: 三个西瓜你会用几来表示?如果我想用单位来表示应该怎么办?(用集合圈把它圈起来)。六个西瓜还能用一来表示吗?那应该用几来表示呢?为什么?12 个西瓜呢?为什么?(因为这里有四圈也就是4个)

  总结:原来我们发现有一个单位就可以用1来表示。有几个单位就可以用几来表示。

  导入新课:这些都是我们了解的整数,可要是不足单位那还能用整数来表示吗?那你会想到什么数?揭示课题:分数的意义

  二、理解分数的意义

  课件出示四分之一,看到这个分数你想到了什么?(让学生自由回答,回忆三年级学过的内容。)

  1、理解一个物体的四分之一

  同学们刚才说的很好,课前老师给同学们准备了一些学具圆片、正方形纸、和练习册等等,利用这些材料折一折、分一分、画一画,找出四分之一。

  可引导学生想想:你是把什么看做一个整体单位的?分成了几份?其中的几份就是四分之一?

  学生可能会有以下的想法:

  生:把一个圆片平均分成4份,取其中的一份就是这个圆片的四分之一。

  生:把一张正方形平均分成4份,其中一份就是这张正方形纸的四分之一。

  生:把一条线段平均分成4份,其中的一份就是这张圆片的四分之一。

  ……强调:你在分时应该怎样分才合理?你找到的四分之一是把什么看作单位?是谁的四分之一?。

  2、理解一个整体的四分之一

  课件出示下面一些物体:你能不能从下面这些物体中找到出四分之一呢? 我想让同学们先交流交流,在练习纸上分一分,画一画找出四分之一,小组交流后汇报。

  在学生找的同时,引导他们思考:你是把什么看作单位的?平均分成了几份?取其中的几份就是单位的的四分之一?

  生:把这四个苹果平均分成4份,一份就是这4个苹果的四分之一。

  生:把八个正方体看做单位平均分成4份,1份就是这八个正方体的四分之一?

  生:把十二个五角星看作单位平均分成4份,1份就是这十二个五角星的四分之一。

  这个四分之一是把谁看做单位一呢?怎样才能把这四个苹果看做单位呢?课件展示四分之一的形成过程。

  操作:你们的学具袋中也有一些像老师这样许多物体组成的单位,拿出来画一画、分一分,从单位中找出四分之一,并和同学们交流交流。

  生:我把8个圆圈看做单位,平均分成4份,其中的1份就是这8个圆圈的四分之一。

  ……强调:你在分时是把谁看作单位。

  3、对比总结

  我们找到了这么多的'四分之一,这些四分之一的单位相同吗?各是把谁看作单位?可为什么都用四分之一来表示呢?

  引导学生理解:虽然它们的单位不相同,但它们都是把单位平均分成四份,取了其中的1份。

  4、寻找分母是四的其他分数

  课件出示刚刚同学们的操作材料想:除了四分之一你还能找到其他分母是4的分数吗?说说你是怎么找到的?

  5、创造分数

  拿出学具中的12根小棒,利用这些小棒摆一摆、分一分,看看你能从小棒中发现哪些分数。思考:你把这些小棒分成了几份其中的几份就是这12根小棒的几分之几?

  生:我把这些小棒分成了6份,我找到了六分之一,六分之二等等。

  生:我把这些小棒分成了3份,我找到了三分之一,三分之二等等。

  ……教师顺势板书学生找到的分数。

  6、总结分数的意义

  在前面观察、操作、交流的基础上我们可以总结出分数的意义:把单位平均分成若干份,其中的一份或几份都可以用分数来表示。

  三、认识分数单位

  告诉学生:分数和整数一样也有它的分数单位。在分数中把单位平均分成若干份,表示其中一份的数就是分数单位。如:四分之一、六分之一、三分之一、十二分之一都是分数单位。并让学生说说都是哪些分数的分数单位。如六分之一是六分之五的分数单位等等。

  练习:老师报数学生说出这个分数的分数单位,并说说有几个这样的分数单位。

  四、深化练习

  1、读读下面有关分数的资料,说说每个分数的具体含义,并谈谈你的感受。

  (1)我国小学生的近视人数约占总数的五分之一。

  (2)小学生睡眠不足的人数大约占总人数的三分之二,小学生每天的睡眠时间应占一天(24小时)的八分之三。

  (3)死海的表层的海水中含盐量达到了十分之三。

  2、用分数表示下面各图的涂色部分(见课件)

  3、下面各图中用分数表示的阴影部分对吗?说说理由。(见课件)

  4、图形中找分数

  图中蓝色部分是由一个长方形和一个正方形重叠后得到的,根据图形填空。

  图形中的蓝色部分面积各占大正方形面积的( ),占大长方形面积的( )、占整个图形面积的( )。

  5、数学智慧

  这里有三盒巧克力,老师要求只能拿走每盒巧克力的1/5,可是小玲却从第一盒中拿走了1颗,从第二盒中拿走了2颗,从第三盒中拿走了3颗,这是为什么?

分数的意义教案3

  教学目标:

  1、通过教学使学生理解单位“1”不仅是一个物体,也可以是一些物体。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或几份的数叫分数。

  3、学生知道单位“1”的几分之几是多少,某一个量是整体的几分之几。

  4、理解并掌握分数单位。

  教学重点难点:

  认识单位“1”,知道一些物体也可以看成是一个整体。

  教学流程预设:

  一、复习引入

  1、出示3/4,“认识它吗?”

  2、介绍分数的出现:当人们在测量、分物或计算中不能刚好得到整数结果时,常常用分数来表示.

  3、分数相关知识回顾:大家都了解分数的哪些知识?

  (1)、怎样读分数

  (2)、分数各部分名称(分子、分母、分数线)

  (3)、怎样写分数:请同学们在草稿纸上写一个你喜欢的分数,写完后同桌间互相读一读,并说说其各部分的名称。

  师:今天,我们继续来深入的了解分数。

  二、新授

  (一)、探索分数的意义

  师:首先,让我们来创造几个分数吧!请你用课前准备好的材料来表示一个分数,独立完成后组内成员互相说一说(每个人都必须说):

  (1)、你创造了哪个分数?(2)、这个分数表示什么含义?

  (学生交流,教师参与)

  1、班内讨论交流

  师:谁愿意来介绍你所创造的分数?

  生:若干,介绍。

  (教师提问:一个物体:

  ①你创造了哪个分数?表示什么含义?<建立模板>

  ②分子、分母分别表示什么含义?

  ③空白部分可以用什么分数来表示?

  一些物体:

  ①同“一个物体”的3个问题

  ②取其中的5份可以用什么分数表示?5/6是几枚扣子?

  ③3枚扣子可以用哪些分数来表示,分别说说它们的意义。)

  <用彩笔表示你是怎么分这些物品的,渗透“整体”概念>

  2、例子分类,总结

  师:大家说的都很不错。刚才我们创造了很多分数,下面我们来给这些物品分分类。

  生:一个物体;一些物体。(教师引导:老师是这么分的,谁能看出我分类的依据?)

  师:刚才大家在展示的时候,很多同学在用到一些物体的时候,用彩笔把所有物体都圈起来了,那为什么只有一个物体的时候我们一般都不圈呢?

  生:把它们看作是一个整体。

  师:我们发现,无论是一个物体或一些物体,都可以看成是一个整体。把这个整体平均分成若干份,其中的一份或几份就可以用分数来表示。

  (教师慢慢出示,考虑到学生的接受能力)

  这就是分数的意义,也是这节课重点要学习的内容。

  (揭题,全班齐读)

  师:一个整体可以用自然数“1”表示,通常叫做单位“1”。因此,分数的意义也可以表示成“把单位“1”平均分成若干份,其中的一份或几份就可以用分数来表示。”

  师:我们思考一下,刚才同学们举的这些例子,分别都把什么看作单位“1”?

  生:......

  师:在我们身边的一些物品中,可以把什么看作是单位“1”?

  生:......

  师:所以说,单位“1”可以是一个物体,也可以是一些物体。

  3、练习

  课本P62做一做(本题把什么看作是单位“1”?)

  (二)、分数单位

  1、阅读“课本P62做一做”下面一段话,并回答其提出的问题。

  2、什么叫分数单位。

  3、“课本P62做一做”中所出现分数的分数单位,其包含了几个这样的分数单位。

  4、同桌间互相说说上课一开始所写分数的分数单位,以及其包含了几个这样的分数单位。

  三、练习巩固

  课本P631、2、3

  (1、说说这个分数的意义?

  (2、把什么看作单位“1”?

  (3、分数单位是什么,其包含了几个这样的分数单位?

  (4、3/8表示几个月饼?4个月饼可以用什么分数来表示?

  四、课堂小结

  师:今天我们又学习了关于分数的哪些知识?

  生:......

  板书:分数的意义

  把一个整体(单位“1”)平均分成若干份,其中的一份或几份,用分数表示。

  一个长方形433/4

  一个圆211/2

  5支铅笔522/5

  12枚回形针622/6(1/3)

  6枚扣子655/6

  把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

分数的意义教案4

  教学内容:

  苏教版《义务教育教科书·数学》五年级下册第52页例1及相应的练习。

  教学目标:

  1.学生初步理解单位“1”和分数单位的含义,能结合单位“1”描述具体分数的意义。

  2.学生经历分数意义的概括过程,进一步理解分数的意义,培养学生初步的观察、比较、分析、综合、抽象、概括等能力。

  3.学生在用分数描述和解释生活现象的过程中,体会分数与生活的密切联系,增强合作交流的意识以及学好数学的信心。

  教学重点:

  理解单位“1”的含义,概括分数的意义。

  教学难点:

  结合具体情境理解分数的意义。

  教学过程:

  一、联系生活情境,建立单位“1”概念

  1.同学们,数学课当然离不开数,看这个数认识吗?(幻灯片出示1)

  2.这可是大名鼎鼎的1,它能表示生活中的许多事物。

  3.瞧!一个苹果,一张桌子,一个正方形,一把尺子…

  4.你会用1表示生活中的事物吗?

  5.学生一一列举。

  6.能说完吗?是呀,说也说不完!的确1是万能的,不过听大家刚才说的,一个,一个,好像小朋友们也能说得出来,谁能说点高级点的1,像我们五年级的水平。

  7.学生一一列举,适时点评,他说得与刚才同学说得有什么不同?

  8.是呀!刚才大家说的是一个物体或一个计量单位,他说得是由许多物体组成的一个整体。1的内涵更加丰富了。

  9.谁还能接着说,能说完吗?同样也说不完。

  :同学们,看来自然数1不仅可以表示一个物体,一个计量单位,还可以表示由许多个物体组成的整体。其实这个1在我们数学上还有一个更加专业的名字:单位“1”。

  设计意图从学生最熟悉的自然数1入手,体会数字1在现实生活情境中的应用,通过用数字1描述生活中事物的活动,让学生体会到数字1的应用范围,一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,从而揭示这其实就是数学中的单位“1”,每一种新事物、新名称的学习我们都要借助学生已有的生活经验,从学生已有的数学经验中自然地引出单位“1”,水到渠成。

  二、借助数学活动,深刻理解单位1

  1.大家来看,中秋佳节刚过,品尝月饼没?赵老师带来了…,个月饼,既然1能表示许多的事物,那么这4个月饼能看成单位“1”吗?

  2.明明这是4个月饼,你怎么用1来表示呢?有什么办法让大家一眼看起来就是1.

  3.如果我们把4个月饼看做单位“1”,以它为标准,那么…

  ………( )

  ………( )

  ……( )

  ……( )

  :数学这门学科就是这样,不仅要认真观察,还要灵活思考,才能得出正确的结论。

  4.刚才我们把4个月饼看做单位“1”,理解了4个月饼的,继续看大屏幕,这些能看做单位“1”吗?请你表示出这单位“1”的,请在活动单上分一分、涂一涂。

  5.纠错、展示学生作品

  (1) (2)

  (3) (4)

  6.抽象本质。同学们,观察大家表示出的,你有什么发现呢?

  预设:

  (1)只要把单位“1”平均分成4份,表示其中的3份,就可以用分数来表示。

  (2)与分的东西没有关系,分的形状也没有关系!

  7.看来表示单位“1”的,与什么有关?与什么无关呢?

  8.同学们,这就是分数的意义本质所在,通过刚才一段时间的学习,谁来说说什么是分数呢?

  揭示分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

  9.既然与分的东西无关,那么我们可以把一条线段看做单位“1”吗?你能在这个单位“1”里表示出吗?

  10.展示学生两种想法

  (1)当成线段(2)看成数轴

  第二种进行:这位同学不仅找到了,关键是它没有把单位“1”看成是一条普普通通的线段,而是把它想成了数学中的数轴,真了不起!

  11. 在哪里呢?这里是多少?这里是?,怎么写的.是1,=1吗?1如果看成数轴,你觉得1后面还有数吗?2在哪里?3呢?1和2的中间呢?1和2的这里呢?

  12. 里面有4个,也就是单位“1”里有4个,刚才的单位1里有几个呢?借助刚才的示意图逐一进行验证!

  13.揭示分数单位:

  :同学们,像这样,把单位“1”平均分成若干份,表示其中一份的数就叫做分数单位,所以就是这些分数的分数单位。

  设计意图 这一环节分两步进行,分数的意义必须建立在学生深刻认识的基础上,通过关注让学生发现分数存在的规律现象,抽象出分数的基本特征,提取概念的本质属性,让学生试着说说什么样的数叫做分数,是抽象基础上的概括。在不断认识中建立分数意义的模型,通过观察验证,发现只要平均分成4份,其分数单位就是,理清分数单位与平均分之间的关系,从而更好地理解分数单位。

  三、深刻认识分数单位,完成巩固练习

  1. 的分数单位?的分数单位?的分数单位?

  2.你们怎么回答的这么快?我还没有说出分子呢?你们怎么就知道分数单位了?

  3.:看来,我们学习数学,能出表面现象中发现问题的本质,就可能处出现事半功倍的效果。你们的思维真好!

  4.来快速完成一组练习吧!看谁有对又快!

  5.巩固练习

  用分数表示各图中的涂色部分,并写出每个分数的分数单位,以及有几个这样的分数单位。

  设计意图任何一节数学课,脱离不了基础行的练习,练习是对已学知识的巩固提升,通过一组题目的练习,增强学生对分数意义以及分数单位的理解,同时把单位“1”里面有几个分数单位凸现出来,为随后的带分数学习做好铺垫。

  四、深化对分数意义的理解

  (1)黄山风景区面积约占黄山山脉的

  (2)黄山年均雨日大约是全年的

  怪不得!这大概就是红树铺燕云、黄山云成海的奇观缘由吧!

  设计意图从数学中回到现实生活中,学生从不同角度丰富对单位“1”的理解,有助于提升对分数意义的认识水平,促进认知结构的建立和完善。

  五、反思

  同学们,你们活跃的思维使得数学课堂熠熠生辉,相信大家,在每一节数学课中,无论从知识上、还是数学方法上,或是学习态度上都会有新的收获与发现,那么,这节课呢?有没有新的思考。

  出示思考问题:

  在刚才的学习过程中

  1.哪个知识点的学习让你记忆犹新?

  2.你有没有领悟到一些不错的数学学习方法?

  3.学习数学重要的一些品质有所体会吗?

  4.或许,你还有别的……

  我相信,这些都来自于你们最真实的想法,无论学习还是生活,学会思考,终究成功!出示:学习知识要善于思考,思考,再思考。——爱因斯坦

  设计意图如果在日常的教学中,能时常带领孩子们从知识、思考方法、学习态度等方面进行有效的反思,这将是对孩子的成长非常有益的,因此,不让学生进行盲目的反思,而是根据问题进行针对性的思考,这样更有助学生对于学习过程进行深度思考。

分数的意义教案5

  教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。

  教学目标:

  进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。

  培养学生判断推理的能力。

  培养学生用辩证的观点看待问题。

  教学重点、难点:

  重点:进一步理解分数单位。

  难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的

  深化认识。

  教学过程:

  1.复检

  (1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,

  关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?

  (2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?

  小结:今天我们就在这个基础上来研究分数。[板书:分数]

  2.新授

  第一层:理解分数意义,初步理解分数单位这个概念。

  出示 、

  (1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]

  (2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )

  (3)第二排的数都表示的是几份?(一份)

  (4)第二排的数与第一排的数之间有什么关系?

  (5)什么是分数单位呀?

  (6)分数单位与“1”之间有什么关系?

  小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单

  位。

  [评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]

  第二层:分数单位相同,分数单位的个数进行比较

  出示

  (1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]

  (2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?

  (3)我们除了对这两个分数进行比较,还可以怎么样?(加减)

  (4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?

  (5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?

  (6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?

  出示

  问:这两个分数可以怎样?(比较、加减)

  [也可将这两个分数与1进行比较]

  小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?

  [评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。

  2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]

  第三层:分数单位的个数相同,分数单位的大小进行比较

  出示

  (1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)

  (2)谁大?( )5比7小,为什么 反而大呢?

  出示:

  问:观察这个分数有什么特点?请你判断一下这两个分数的大小。

  小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份

  越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。

  [评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]

  第四层:发散思维的训练,深化对分数单位的理解

  出示:

  问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)

  出示

  问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)

  小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的`关键的一点都是什么?(分数单位)

  [评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >

  ②因为 > 所以 >

  ③学生大胆设想,都转化成分母相同再比较,等等。

  学生方法的多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]

  第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。

  出示

  (1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)

  (2)分子比分母大说明什么?(这个数比1大)

  (3) 我们就可以看作几部分?

  (4) 和1 的大小一样不一样?我们就可以用什么符号连接?

  小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)

  [评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]

  3.质疑

  4.总结

  这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。

  七.板书设计

  八.反思:

  本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。

  以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。

  教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。

分数的意义教案6

  教学目标

  (一)使学生理解。

  (二)使学生知道分数各部分的名称和含义,知道一个分数的单位。

  (三)培养学生抽象概括能力。

  教学重点和难点

  (一)、分数单位的意义。

  (二)单位“1”的理解。

  教学用具

  投影片,教学图片。

  教学过程设计

  (一)复习准备

  1.口答下面各题:(2~4题用投影片)

  (1)把一块月饼平均分给两位小朋友,每位小朋友得到这块月饼的多少?

  (2)用分数表示下面各图中阴影部分。

  (3)哪个分数表示图中“( )”部分?

  2.教师:观察上面(1)~(3)题的答案,都不是整数。人们在进行测量和计算的时候,往往得不到整数结果,这时就需要同一种新的数,即分数来表示。以前我们已经初步认识了分数,今天继续研究分数。板书课题:。

  (二)学习新课

  1.。

  (1)依次出示教材84页第一组图中的三幅图。

  ①把糕点图贴在黑板上,用彩条把它平均分成两份。

  教师:请观察这幅图,是什么意思?

  说一说把谁拿来分?怎样分?分几份?每份是多少?

  ②把正方形图纸贴在黑板上。

  教师:请说一说这幅图是什么意思?

  (学生口答后补充板书)

  引导学生说出:把正方形纸平均分4份,空白部分占1份,阴影部

  ③贴出线段图。

  教师:我们把上面各题中平均分的一块糕点,一张正方形纸,一米长的线段,都叫做单位“1”。

  (2)投影出图。教师:有4个苹果,把它平均分4份,图上如何表示?(学生在投影图上用虚线表示。)

  教师:①图上表示把谁平均分?谁是单位“1”?②1个苹果是这堆苹果的多少?③3个苹果是这堆苹果的多少?(投影出题,学生讨论。)

  (因为苹果的总数是单位“1”,把它平均分4份,1个苹果是1份,是

  投影出图。

  教师:有6只熊猫玩具,要平均分,可以怎样分?谁做单位“1”?每份是多少?几份是多少?

  学生小组讨论,然后汇报。教师根据学生口答,板书出:

  教师:从上面这两个例子可以看出,单位“1”不仅可以是一个物体,一个计量单位,也可以是若干物体组成的一个整体,如一堆苹果,一批货物,一个班的同学等等。总之,把谁平均分,谁就是单位“1”。

  教师:单位“1”与自然数1有没有区别?

  学生讨论后老师小结:自然数1是一个数,它只表示某一个具体事物,如一本书,一位同学,一支笔,一道数学题等,它是自然数的计数单位。而单位“1”不仅可以表示某一个具体的事物,还可以表示一堆,一群,一批等事物,它表示谁平均分的整体。

  (3)教师:请同学们看看板书的这些分数,谁能说一说究竟什么叫分数?

  学生讨论概括后老师板书:(或贴小黑板条)

  把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  (4)口答练习:(投影片)

  什么?各以什么为单位“1”?

  位“1”?

  2.认识分子,分母和分数单位。

  (1)请学生在板书的分数中任意选一个分数,指出它的分子、分母,并说明它们各表示什么?

  (2)教师板书分数,请学生说一说分子、分母,及各表示什么?学生口答后教师板书:

  教师:表示其中1份的数?

  小黑板条:分数单位。)

  练习:请说出下列分数的分数单位,并说出它含有几个分数单位。

  (三)巩固教案反馈

  1.课本86页做一做1,2,请两位同学填投影片,其余同学填在书上。集体订正。

  2.课本86页做一做(下)1,2,请两位同学填投影片,其余同学填在书上。集体订正。

  3.口答填空:(投影片)

  4.教师分别取出2根,4根,10根粉笔,请同学分别说出它们的

  教师汇总:单位“1”的数量不同,平均分成同样多的`份数后,其中每份数的多少就不相同。

  (四)课堂总结与课后

  1.,分数单位的意义。

  2.分子、分母各表示什么。

  3.作业:课本87页练习十八,1,2,3,4,5。

  课堂教学设计说明

  本节内容是在学生已经对分数有了初步认识,会读会写简单分数的基础上进行的。分数意义的学习,充分利用直观图形和学生的活动来突破“平均分”这个关键。第一组中三幅图的设问,引导学生逐层深入地认识一个单位的几分之一和几分之几,同时也为概括作了铺垫。在认识多个物体组成的整体时,要求学生按自己的设想去分,这样给学生留有更多的思维活动空间,便于调动他们的学习热情。在学生已掌握了平均分谁,谁就是单位“1”的基础上,安排学生讨论单位“1”和自然数1的区别,这样既加深了对单位“1”的认识,也为学生概括分数意义作铺垫。学生准确地把握了后,认识分子,分母及分数单位,即水到渠成,练习中安排了较多形式的题目,进行巩固和加深。

  新课内容分为两部分。

  第一部分学习。分为四层:认识单位“1”是一个事物、一个计量单位的分数;认识单位“ 1”是一个整体的分数;概括分数意义;巩固概念。

  第二部分认识分子、分母和分数单位。分两层。了解分子,分母的含义;认识分数的单位。

分数的意义教案7

  课堂上需要解决的问题:(按本节课的顺序)

  (1)分数各部分的名称、读法、写法。 (2)“单位1”的理解。

  (3)分数的意义。 (4)分数的“单位”。

  重点:所授之识均为重点。难点:既知是难点,上课之前已想办法通过合理的教学手段予以克服,上课之时何来难点。

  教学过程:

  一、拉近学生距离:向学生问好(用激情洋溢的情绪调动学生的情绪,并引导学生观察、读懂教师的表情、动作,使学生被老师的行为所吸引。)

  二、有效引导,引出分数,解决“写法、读法、各部分名称、初步理解意义”这4个任务。

  1、大家会分东西吗,下面看老师分,大家要注意看,要弄清楚以下几个问题?

  A老师分的是什么“东西”?

  B我是怎么分的?

  C分成了几份?

  D红颜色的占其中的几份?

  连起来说一句话:老师把( )( )分成了( )份。红颜色的占其中的( )份

  (1)将一段1米长的线段平均分成了3份,红的占其中的2份。

  老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。

  (2)将一个长方形平均分成6份。红的占其中的5份。

  老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。

  (3)将8只羊平均分成4份,红色的羊占其中的(1)分。

  老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。

  2、引导:

  (1) 大家注意,我们把下面这句话的意思用简单的形式来表示:

  6和9的最小公倍数是18。→=18

  数学中许多较为复杂的语言我们可以用一个简单的形式来表示,大家觉得爽不爽?

  (2)我们今天再来爽一爽

  A课件回到将一条线段平均分成3段的画面。

  “老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。”这句话实在太长了,我现在用一个简单的方法来表示,大家说好不好?引出分数“三分之二”( ),(在显示过程当中明确分数的写法。)教师明题,这个数叫分数,它读作“三分之二”下面的3叫做“分母”上面的“2”叫做“分子”(该部分全部由教师在黑板上板书。)教师提问:分母表示什么意思?分子表示什么意思?反过来问一下:在这里“三分之二”表示什么意思呢?→表示把1米长的线段平均分成3份,表示其中的两份。

  B课件回到将一个长方形平均分成6份,红的占其中5份的`画面。

  将“老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。”用分数表示。(已经可以叫学生自己说、写了)之后让学生回答:分母表示什么意思?分子表示什么意思?反过来问:“六分之五”这个分数表示什么意思呢?→表示把一个长方形平均分成6份,表示其中的5份。

  C课件回到将8只羊平均分4份,红色的占其中的1份的画面。

  将“老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。”这句话用分数表示。由学生来完成。反过来问→“四分之一表示什么意思呢?→表示把8只羊平均分成4份,表示其中的1份。

  三、单位“1”的认识

  给出另一个新的分数“二分之一”问它表示什么意思呢?

  教师对学生的回答表示认可,但提出疑问:你难道知道一定是分这个东西吗?听听其他同学的意见。

  A可以分西瓜 B可以分菠箩 C可以分小鸭……

  总之,我们很多东西都可以分,但在分的时候,我们都把他们当成“一个整体”来看,是“一个整体”所以我们可以给他们取一个统一的名字:单位“1”,大家说好不好,不好,你取取看。1为什么加引号的问题解决。

  (通过课件,使学生明确单位“1”)

  四、深入理解分数意义,分数的单位的认识

  1、练习巩固:课件演示

  (1) 上面是一个空心的圆,下面是一个分数:四分之三

  让学生说说:要你做什么?把这个圆平均分成4份,用颜色表示(取)其中的三份。(或:把单位“1”平均分成4份,表示其中的3份。)

  回答清楚以后由学生自己完成。

  (2) 出示一条线段:下面是一个分数:十分之七

  让学生说说:要你做什么?(让学生用两种方式来回答。)再由学生完成。(除了用颜色涂以外,教师教另一种表示方法,为教学例1做准备。

  (3)出示例1,让学生弄请清和(2)的区别,明确是将0~1之间的线段分一下。然后完成例1。

  完成其余2~3题。

  2、分数单位的认识

  1)分母是3的最小分数想一想是几?分母6的最小分数是几?分母是8的最小分数是几?

  通过观察,使学生认识到这些分数的分子都是“1”,取一个共同的名字叫“分数单位”

  2)练习

  三分之一()是哪些分数的分数单位?说一说各含有几个分数单位。

  六分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  八分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  练一练第5题。

  练一练第6题。

  五、巩固练习:完成书上其余练习。教师巡视批阅。

  六、课堂总结:

  以一个分数为例,说一说(1)分数各部分的名称、读法、写法。

  (2)分数的意义。

  (3)“单位1”的理解。

  (4)分数的“单位”。

  六、拓展题

  有一位老伯将17头牛留给他的三个儿子,他给大儿子二分之一,给二儿子三分之一,给小儿子九分之一,你会帮他们分吗?怎么分?他们各得几头?

  七、作业布置:

  《作业本》

分数的意义教案8

  学习内容:

  课本第97页例1及“做一做”,第99页练习十九第1、2、3题。

  学习目标:

  1.我会用分数与小数的关系,把小数化成分数。

  2.我能应用所学数学知识解决问题的能力。

  学习重难点:

  小数化分数的方法。

  学习过程:

  一、导入新课

  请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?

  二、合作探究、检查独学

  1.自学例1,小组合作交流

  用分数表示:

  用小数表示:

  这两个结果有什么关系:

  2.用自己的话说一说怎样把小数化成分数?应注意什么问题?

  ①我的'想法:

  ②完成课本97页“自己试一试”三个填空题。

  3.小组代表展示、汇报

  4.总结升华

  5.我能行:“做一做”把下列小数化成分数。

  0.4= 0.05= 0.37=

  0.45= 0.013=

分数的意义教案9

  教学目标

  1,使学生知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系,会比较分数的大小,认识真分数和假分数,知道带分数是一部分假分数的另一种形式,并能比较熟练地进行假分数与带分数,整数的互化。

  2,使学生理解和掌握分数的基本性质,能比较熟练地进行约分和通分。

  3,使学生理解求一个数是另一个数的几分之几用除法计算,并能解答求一个数是另一个数的几分之几的应用题。

  教学重点

  1,使学生理解分数的意义,明确分数与除法的关系,学会比较分数的大小。

  2,使学生理解真分数和假分数的含义,知道带分数是假分数的一部

  分,能熟练地进行假分数与带分数,整数的`互化。

  3,使学生理解和掌握分数的基本性质,能较熟练地进行约分和通分。

  教学难点

  1,使学生理解分数的意义,理解分数和除法的关系,能根据分数的意义和分数与除法的关系,正确解答求一个书是另一个数的几分之几的应用题。

  2,使学生认识真分数,假分数,学会真分数,假分数及带分数的互化;掌握分数的基本性质,能根据分数基本性质解决有关问题。

  课时安排:

  1,分数的意义……6课时

  2,真分数和假分数……4课时

  3,分数的基本性质……2课时

  4,约分和通分……4课时

  5,整理和复习……2课时

分数的意义教案10

  分数的意义 总42(电36)

  教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义。

  教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义。

  教学难点:使同学理解"分数"的意义,弄清分数单位的含义。

  教学课型:新授课

  教具准备:课件

  教学过程:

  创设情景,温故引新

  1,提问:A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决。即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示。

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识。

  (1)相互交流:① 关于分数我已经知道了什么请把已知道的讲给同学们听。

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义。

  (1)用分数表示下面各图中的阴影局部。[课件1]

  (2)填空。[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( )。

  ② 把一块饼平均分成2份,每份是它的( )/( )。

  ③ 把一个正方形平均分成4份。1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影。

  用一张正方形的纸,折出它的'3/8,并涂上阴影。

  (4)抢答。 [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( )。为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 假如这个文具盒里只有6枝铅笔。现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义

  ⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢

  (5)说说下列分数所表示的意义。[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结。

  我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1"。

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  三,加强练习,深化概念

  竞赛:请两位同学站起来。

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的——————— 这两位同学是全班人数的———————

  四,家作

  1,P88 。1,2

  2,P89 。3

  板书设计: 分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

分数的意义教案11

  课题一:(一)

  教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

  教学重点 理解。

  教学用具 教材第84~85页有关的投影片、线段图等。

  教学过程

  一、创设情境

  1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

  2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

  3.揭示课题

  在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

  二、探索研究

  1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

  (2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

  (3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

  如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

  2、进一步认识单位1。

  以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

  (1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

  (2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

  (3)练习:说出下图中涂色的部分各占整体的几分之几。

  ● ●

  ●○○○○○ ● ●

  ●○○○○○ ● ●

  ● ○

  ● ○

  ● ○

  3.揭示。

  (1)观察以上教学过程 所形成的板书。

  一个物体

  计量单位 单位1

  一些物体

  告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

  (2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

  (3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  4.练习。练习十八第1、2、3题。

  5.教学分数各部分名称、分数单位。分数的读、写法。

  (1)教师任意写出几个分数,让学生说出分数各部分的名称。

  (2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

  (3)认识分数单位,初步了解分数单位的特点。

  练习:① 的分数单位是,它有个 。

  ② 的分数单位是,它有个 。

  ③个 是。

  ④ 是个 。

  (4)想一想:读、写分数的方法是怎样的?

  读作 ,表示 个 。

  读作 ,表示有 个 。

  三、课堂实践

  1. 表示把平均分成份,表示这样的份的数。

  2. 读作,分数单位是,再添上个这样的单位是整数1。

  四、课堂小结

  1、什么叫做分数?如何理解单位1?

  2、什么是分数单位?分数单位有什么特点?

  五、课堂作业

  练习十八第5、6题。

  课题二:(二)

  教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

  教学重点 理解。

  教学过程

  一、 创设情境

  1.用分数表示图中阴影部分。

  ▲▲ ▲▲

  △△ ▲▲

  2.口答:什么是分数?如何理解单位1?

  3.填空。

  是个 。 的分数单位是

  7个 是。 的分数单位是

  二、揭示课题

  出示学习内容及学习目标。板书课题:。

  三、探索研究

  1.认识用直线上的点表示分数。

  分数也是一个数,也可以用直线(数轴)上的点来表示。

  (1)认识用直线上的点表示分数的方法。

  ①画一条水平直线,在直线上画出等长的距离表示0、1、2。

  ②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

  0 1 2

  (2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

  ①先画什么?再画什么?

  ②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

  ③ 应用直线上的哪一个点来表示?

  (3)如果要在这条直线上表示分母是10的分数,该怎么办?

  这条直线上0~1之间的第七个点表示的分数是多少?

  2.练习。

  (1)教材第87页下面做一做的第2题。

  (2)用直线上的点表示 、 、 、 。

  3.教学例1。

  (1)指名读题,帮助学生理解题意。

  (2)出示讨论题,同桌讨论。

  ①这题中把什么看作单位1?

  ②1人占这个整体的几分之几?

  ③5人占这个整体的几分之几?

  (3)汇报讨论结果,板书答语。

  (4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

  4、练习。教材第88页的做一做。

  四、课堂实践

  1.教材第87页的做一做。

  2.用直线上的点表示 下面的分数: 、 、 、 、 。

  3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

  五、课堂小结

  1.用直线上的点表示分数的方法是怎样的?

  2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

  六、课堂作业

  练习十八第4、7、8题。

  课题三:分数与除法的关系

  教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

  教学重点 理解和掌握分数与除法的关系。

  教学用具 投影片(教材第89页的饼图)

  教学过程

  一、创设情境

  1.填空。

  (1) 表示。

  (2) 的分数单位是,它有个这样的分数单位。

  2.计算。(1)58 (2)49

  二、揭示课题

  我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

  三、探索研究

  1.教学例2

  (1)读题后,指导学生根据整数除法的意义列出算式。板书:

  13=

  (2)讨论:1 除以3结果是多少?你是怎样想的?

  (3)教师画出线段示意图,帮助学生理解。

  1米

  ?

  通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

  (3)写出答语。

  2.教学例3。

  (1)读题后,引导学生列出算式:34。

  (2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

  (4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

  34=(块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

  3、认识分数与除法的关系。

  (1)引导学生观察13=、34=这两道算式,想一想:

  ①两个自然数相除,在不能得到整数商的.情况下,还可以用什么数表示?

  ②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)教师总结,学生发言,归纳出以下三点:

  ①分数可以表示整数除法的商;

  ②在表示整数除法的商时,要用除数作分母、被除数作分子;

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

  分数与除法的关系可以表示成下面的形式:

  板书:被除数除数=

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

  板书:ab=(b0)

  (4)想一想:这里的b能为0吗?为什么?

  启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

  (5)再想一想:分数与除法有区别吗?区别在哪里?

  着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

  4、学生阅读教材,质疑问难。

  四、课堂实践

  教材第91页中间的做一做。

  五、课堂小结。

  引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

  六、课堂作业 。练习十九第1~3题。

  课题四:分数与除法关系的应用

  教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

  教学重点 求一个数是另一个数的几分之几的应用题。。

  教学过程

  一、创设情境

  1.口答:30分米=米 180分=时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)79(2)47(3)815(4)5吨8吨

  二、揭示课题

  这节课学习分数与除法关系的应用。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第91页下面的做一做。

  3.教学例5 。

  (1)出示教材第92页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:3010=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第92页做一做第1、2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=米 146千克=吨 23时=日

  41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十九第4~7题。

  七、思考题。

  练习十九第8题及思考题。

  课题五:分数大小的比较

  教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

  教学重点 掌握比较分数大小的方法。

  教学用具 投影片(教材例6、例7直观图)

  教学过程

  一、创设情境

  1.教材第93页复习题,请一名学生口答。

  2.看图写分数,并比较分数的大小。

  0 1

  二、揭示课题

  以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

  三、探索研究

  1.同分母分数的大小比较。

  (1)比较 和 的大小。

  出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

  如果没有直观图,该怎样比较 与 的大小呢?

  因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

  (2)用类似的方法引导学生比较 和 的大小。

  (3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

  板书:分母相同的两个分数,分子大的分数比较大。

  2.练习:教材第93页做一做。

  3.同分子分数的大小比较。

  (1)比较 和 的大小。

  ①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

  ② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

  (2)比较 和 的大小。

  用类似的方法进行比较并得出结论: < 。

  (3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

  板书:分子相同的两个分数,分母小的分数比较大。

  4、练习:教材第95页的做一做。

  四、课堂小结

  比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

  五、课堂实践

  1.练习二十第1题。

  2.练习二十第3题。

  六、课堂作业

  练习二十第2、4题。

  七、思考练习

  在括号里填上合适的数

  < < < > >

分数的意义教案12

  分数的意义

  1、进一步认识分数,发展数感,体会数学与生活的密切联系

  2、进一步体会“整体”与“部分”的关系

  3、理解有关单位“1”的数学内涵,进而揭示分数的意义,认识分数单位伯含义。 认识分数的意义,体会整体与部分的关系

  观察分析,比较法,小组交流学习法

  主题图的放大图,学生自备20根小棒

  一课时

  一、创设情境

  (1)展示主题图

  (2)让学生说出从图中获取的主要信息

  (3)揭示课题

  二、师生共同探究新知

  (一)再创情境,探案例1

  1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)

  他告诉我们什么?我分得这个月饼的1/4

  谁能告诉大家,这里的1/4是把()看作一个整体呢??

  2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的1/4是把什么看作一个整体呢?

  分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈

  (二):教学单位“1”、分数意义和分数单位

  1、关于单位“1”

  学生小组交流“议一议”

  师让学生小组“议一议”的3个情境,全班反馈(师对应板书)

  归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)

  2、关于分数的意义

  理解了什么是单位1的量,我们进一步认识分数的意义

  学生活动:(小组合作)拿出一些小棒,把它看作单位1

  使它能平均分成5份,6份??

  情况反馈

  归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数

  说一说,议一议,上面分数的实际意义

  课堂活动:说一说生活中的分数;画一画(书上的第2题)

  3、关于分数单位的认识

  把单位“1”平均分成若干份,表示这样一份的`数,又叫做这个分数的单位。 让学和举例说一说:

  再议一议:分数单位与分数什么有关系?(分母)

  三、全课总结

  1、反思与质疑

  本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。

  2、还有什么疑惑的,或者有什么不同的想法?

  师生共同梳理

  单位“1”——分数——分数单位

  四、布置作业

  课本第25~26页1、2、3题

  分数

  单位“1”:??

  分数的意义:??

  分数单位:??

  单位“1”——分数——分数单位

分数的意义教案13

  教学目标

  (1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。

  (2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。

  (3)能正确地解答“求一个数是另一个数的几分之几”的应用题。

  教学重点、难点

  重点、难点:分数的意义和性质。

  教具、学具准备

  教 学过程

  备 注

  一、知识整理

  1、分数的意义整理

  (1)提问:什么是分数?分数与除法有什么关系?

  (2)练习:说出下列分数的'意义、分数单位及有几个这样的分数单位:

  1/45/61/8千克4/7米

  A、学生回答并提问:在“1/8千克”和“4/7米”中,把什么看作单位“1”?

  B、把“5/6”和“4/7米”改写成除法算式,怎么写?从除法的角度,如何来理解这两个分数的意义?

  2、分数的基本性质整理。

  (1)出示:1/2=()/85/7=20/()1又30/45=1又()/()()/20=6。8=9/()

  A、学生回答。

  B、这道题用到什么知识?什么是分数的基本性质?

  (2)将“商不变性质”与“分数的基本性质”的内容添入下面的表格中:(全体练P159第12题中(4))

  商不变性质分数的基本性质

  [][]

  反馈后提问:它们之间有什么联系?学生回答后接着问:那么。“商不变性质”就是“分数的基本性质”吗?为什么?

  (3)练习:

  ①()/18=5/6=20/()=()÷12约等于()(保留两位小数)

  ②填上大于、小于或等与:

  4/7()5/147/11()29/4421/35()3/532/60()2/3

  问:你是怎么比较的?

  教学过程

  备 注

  二、基本练习

  1、A、把单位“1”平均分成5份,表示这样的3份数是()。

  把4吨平均分成11份,表示这样的2份的数是(),表示这样的3份是()吨。

  B、2又5/6的分数单位是(),它有()个这样的分数单位,9个这样的单位组成的数是();

  C、把7/8的分数单位扩大2倍是(),把它的分数单位缩小2倍是()。

  2、比较分数的大小,课本P160第14题。

  (1)学生练习

  (2)反馈练习结果后讨论:

  11/22()7/825/40()20/321又3/20()1.151.75()1又5/6分别用什么方法比较大小来得方便?为什么?

  (3)方法小结:

  A、异分母分数比较大小,一般用通分或约分的方法进行;

  B、分数与小数比较大小,一般化成小数比较方便些/

  4、列式解答:

  甲数是40,乙数是32,丙数是48,求:

  (1)甲数是乙数的几倍?

  (2)乙数是丙数的几分之几?

  (3)甲数是乙、丙两数之和的几分之几?

  (4)丙数是甲、丙两数之和的几分之几?

  A、学生全体练习

  B、反馈:师生讨论列式与结果。

  C、小结:求一个数是另一个数的几倍或几分之几,关键是什么?方法怎样?这两类题目有什么共同点和不同点?

  三、综合练习

  1、课本P158第12题。

  2、课本P159第13题。

  学生练习后反馈说理。

  3、独立作业:P160第15、16、17题。

  四、课堂作业

  《作业本》

  理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质中,如“1千米的3/4和3千米的1/4是相等的”有些学生理解不通;还有如看图用分数表示阴影中什么时候用带分数,什么时候用假分数,也有些学生分不清。

分数的意义教案14

  教学内容

  教科书第1~3页例1,课堂活动第1题及练习一1~4题。

  1.让学生理解百分数的意义,能正确读写百分数,知道百分数与分数的区别。

  2.在学生探究数学的过程中培养学生的抽象概括能力和比较分析能力。

  3.使学生感受百分数与生活的联系,体会数学的应用价值,激发学生学习数学的兴趣。

  理解百分数的意义。

  教具:小黑板。

  学具:学生收集的生活中的百分数。

  一、联系生活,引入新课

  (1)学生汇报收集的生活中的百分数。

  课前,老师让大家收集生活中的百分数,找到了吗?在什么地方找到的?

  (2)人们在生活中为什么这么喜欢用百分数呢?这节课咱们就一起来研究。(揭示课题)你想了解百分数的哪些知识?

  二、自主探索,学习新知

  1.理解百分数的具体含义

  (1)出示麻辣烫火锅配料成分,根据百分数信息分析麻辣原因。

  辣椒占45%,花椒占38%,其他成分占17%。

  教师:知道火锅为什么这么麻?这么辣吗?

  (2)分析:辣椒占45%表示的意义。

  分母100表示什么?45呢?

  45%是什么数与什么数比较的结果?

  (3)花椒占38%,其他成分占17%的意义又该怎样理解?

  小结:如果把火锅配料的成分看做是100份,辣椒占了其中的45份,花椒占了38份,其他成分仅仅占了17份,难怪它又麻又辣!

  2.结合身边的实例分析,进一步理解百分数的意义

  出示某市学生近视率的信息。

  (1)说一说其中每个百分数表示的意义。(2)体会百分数的优点,观察比较这组数据,你能发现什么?

  (3)情感目标教育渗透。看到这组数据,你有什么感想?想对同学们说什么?

  3.抽象概括出百分数的意义

  刚才我们了解了每一个具体的百分数的含义,那么现在你能用自己的话说一说百分数表示什么意义吗?(先独立思考,再小组交流)

  三、拓展应用,促进发展

  1.招聘“学校新闻小记者”的活动

  教师:寻找百分数信息,说百分数的意义,谈自己的感想。

  (1)在某市学校附近的小摊中,合格的`食品仅是30%。

  (2)按照规划,到20xx年我国城市污水处理率不低于60%,重点城市不低于70%。

  (3)我国的耕地面积占世界总耕地面积的7%,我国人口占世界总人口的22%。

  2.汇报自己手中收集的百分数

  四人小组汇报自己收集的每个百分数的意义。

  3.写百分数

  (1)百分数该怎么写呢?(学生观察,教师示范)

  教师:先写什么?再写什么?写时要注意什么?

  (2)书写比赛。(让学生在20秒的时间内写百分数,看谁写得又快又好。)

  如果老师要求完成的任务是写10个,能用一个百分数表示自己完成的情况吗?

  教师:如果写11个,能用百分数表示吗?

  4.完成练习一的第1题

  5.百分数与分数比较

  (1)百分数跟我们学过的哪种数比较相似?有什么联系与区别?(小组交流)

  (2)判断。下面哪个分数可以用百分数的形式表示。

  2510080100kG……

  小结:百分数是一种特殊的分数,表示两个数之间的倍数关系,它的后面不能写单位名称;而分数既可以表示一个具体的数量,又可以表示两个数之间的倍数关系;如果分数表示具体的数量时,它的后面就可以写单位;如果表示倍数关系时,它的后面就不写单位。

  6.百分数联想风暴

  观察格子图,你能快速地联想到哪些百分数?(涂50个黑色格子,6个红色格子,44个白色格子)

  教师:今天这节课你有什么收获?你能用百分数总结这节课的收获吗?

分数的意义教案15

  教材分析

  《百分数的意义和写法》是人教版六年级上册第五单元第一节的内容,本节课主要内容是百分数的意义和写法。它是在学生掌握了分数的意义和读写法的基础上进行教学的。百分数在日常生活中有着广泛的应用,学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的`是一个数量是另一个数量的百分之几,也就是让学生完成百分数意义的自我建构尤为重要。通过这节课教学,使学生理解百分数的意义,能正确读写百分数,为今后学习有关百分数其它知识做了铺垫。

  学情分析

  六年级学生已经积累了一定的生活经验,学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,分数和百分数有密切的联系,但是意义又有所不同,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。

  教学目标

  (1)知识与技能:使学生理解百分数的意义,掌握百分数的读、写法,应用百分数解决简单的实际问题。

  (2)过程与方法:通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。

  (3)情感、态度、价值观:结合相关信息,让学生体会百分数与生活的密切联系。

  教学重点和难点

  教学重点:让学生借助生活经验,通过生活实例来理解百分数的意义。

  难点:理解百分数与分数的联系和区别。

【分数的意义教案】相关文章:

分数的意义教案02-27

《分数的意义》教案02-11

分数的意义教案02-12

《分数的意义》教案03-16

分数的意义教案通用11-28

分数的意义教案(荐)11-24

(荐)分数的意义教案11-06

分数的意义教案【精】03-18

分数的意义教案【热】03-18

【推荐】分数的意义教案06-03