七年级数学教案

时间:2023-03-01 08:42:30 教案 我要投稿

七年级数学教案(通用15篇)

  在教学工作者实际的教学活动中,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?以下是小编精心整理的七年级数学教案,欢迎阅读与收藏。

七年级数学教案(通用15篇)

七年级数学教案1

  第一章 有理数

  单元教学内容

  1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.

  2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系.

  (2)数轴能反映数的性质.

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数.

  (4)数轴可使有理数大小的比较形象化.

  3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.

  4.正确理解绝对值的概念是难点.

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值.

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零.

  (3)两个互为相反数的绝对值相等,即│a│=│-a│.

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0.

  三维目标

  1.知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数.

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解.

  (3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.

  (4)会利用数轴和绝对值比较有理数的大小.

  2.过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.

  3.情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.

  重、难点与关键

  1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.

  2.难点:准确理解负数、绝对值等概念.

  3.关键:正确理解负数的意义和绝对值的意义.

  课时划分

  1.1 正数和负数 2课时

  1.2 有理数 5课时

  1.3 有理数的加减法4课时

  1.4 有理数的乘除法5课时

  1.5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1.1正数和负数

  第一课时

  三维目标

  一.知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.

  二.过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.

  三.情感态度与价值观

  培养学生积极思考,合作交流的意识和能力.

  教学重、难点与关键

  1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.

  2.难点:正确理解负数的概念.

  3.关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解. 教具准备

  投影仪.

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前

  11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33

  的“+”、“-”号叫做它的符号,这种符号叫做性质符号.

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.

  用正负数表示具有相反意义的量

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.

  (6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的'路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.

  六、巩固练习

  课本第3页,练习1、2、3、4题.

  七、课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.

  八、作业布置

  1.课本第5页习题1.1复习巩固第1、2、3题.

  九、板书设计

  1.1正数和负数

  第一课时

  1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面

  11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33

  “+”、“-”号叫做它的符号,这种符号叫做性质符号.

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

  1.1正数和负数

  第二课时

  三维目标

  一.知识与技能

  进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.

  二.过程与方法

  经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.

  三.情感态度与价值观

  鼓励学生积极思考,激发学生学习的兴趣.

  教学重、难点与关键

  1.重点:正确理解正、负数的概念,能应用正数、?负数表示生活中具有相反意义的量.

  2.难点:正数、负数概念的综合运用.

  3.关键:通过对实例的进一步分析,?使学生认识到正负数可以用来表示现实生活中具有相反意义的量.

  教具准备

  投影仪.

  教学过程

  四、复习提问课堂引入

  1.什么叫正数?什么叫负数?举例说明,?有没有既不是正数也不是负数的数?

  2.如果用正数表示盈利5万元,那么-8千元表示什么?

  五、新授

  例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.

  2.20xx年下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,?中国增长7.5%.

  写出这些国家20xx年商品进出口总额的增长率.

  分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.?“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

七年级数学教案2

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的.类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级数学教案3

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的`认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案4

  1.教学重点、难点

  重点:列代数式。

  难点:弄清楚语句中各数量的意义及相互关系。

  2.本节知识结构:

  本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

  3.重点、难点分析:

  列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

  如:用代数式表示:比 的2倍大2的数。

  分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

  4.列代数式应注意的问题:

  (1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的.“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

  (2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

  (3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

  (4)在代数式中出现除法时,用分数线表示。

  5.教法建议:

  列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案5

  教学过程:

  一、复习

  1、一辆汽车行驶的速度不变,行驶的时间和路程。

  2、一辆汽车从甲地开往乙地,行驶的时间和速度。

  看上面的题,回答下面的问题:

  (1)各有哪三种量?

  (2)其中哪一种量是固定不变的?

  (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

  3、这节课,我们就应用比例的知识解决一些实际问题。

  二、新授

  1、教学例5

  (1)出示例5:张大妈家上个月用了8吨水,水费是2。8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

  (2)学生读题后,思考和讨论下面的问题:

  ①问题中有哪两种量?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (4)根据正比例的意义列出方程:

  解:设李奶奶家上个月的水费是χ元。

  12。8/8=χ/10

  8χ= 12。8×10

  χ=128÷8

  χ= 16答:李奶奶家上个月的水费是16元。

  (5)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19。2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的.正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

  (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

  (3)指名板演,全班评讲。

  4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  三、巩固练习

  1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

  2、完成练习九第5、6、7题。

  四、总结

  用比例知识解决问题的步骤是什么?

  教学目标:

  1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  3、培养学生良好的解答应用题的习惯。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正分析题中的比例关系,列出方程。

七年级数学教案6

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的.意义

  请学生举出一些相反意义的量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

七年级数学教案7

  【教学目标】

  引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;

  【教学难点】

  找出题目中的可有可无的已知条件,说一说为什么可以这样认为

  【教学过程】

  问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?

  出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时?

  分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时',可以求出汽车原来的.速度。

  学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)

  现在的时间:352÷80=4.4(小时)

  问:用比例的思路该怎么样理解这道题目呢?

  分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的

  2.5倍。即:11÷2.5=4.4(小时)。

  这样解答使得`甲乙两地公路全长352千米'成了多余条件,但是又不影响解答问题。

  【我们来探索】

  一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?

  【总结】

  在解答应用题时要善于应用不同的思路和技巧,巧解问题

  【作业】

  丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?

  丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?

七年级数学教案8

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程(师生活动) 设计理念

  探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  也可以教师说出一些数,让学生进行判断。

  集合的概念不必深入展开。

  创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数 这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的.标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业

  1, 必做题:教科书第18页习题1.2第1题

  2, 教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级数学教案9

  一、课题

  2.1数怎么不够用了(2)

  二、教学目标

  1.使学生理解有理数的意义,并能将给出的有理数进行分类;

  2.培养学生树立分类讨论的思想。

  三、教学重点和难点

  重点

  难点

  有理数包括哪些数.

  有理数的分类及其分类的标准.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有的认知结构提出问题

  1.什么是正、负数?

  2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

  3.任何一个正数都比0大吗?任何一个负数都比0小吗?

  4.什么是整数?什么是分数?

  根据学生的回答引出新课.

  (二)、讲授新课

  1.给出新的整数、分数概念

  引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

  2.给出有理数概念

  整数和分数统称为有理数,即

  有理数是英语“Rational number”的译名,更确切的译名应译作“比

  3.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充.

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

  并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

  (三)、运用举例 变式练习

  例1

  将下列数按上述两种标准分类:

  例2

  下列各数是正数还是负数,是整数还是分数:

  课堂练习

  25、-100按两种标准分类.

  2、下列各数是正数还是负数,是整数还是分数?

  (四)、小结

  教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  七、练习设计

  1.把下列各数填在相应的括号里(将各数用逗号分开):

  正整数集合:{ …};

  负整数集合:{ …};

  正分数集合:{ …};

  负分数集合:{ …}.

  2.填空题:

  的数是______,在分数集合里的数是______;

  (2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

  3.选择题

  (1)-100不是

  A.有理数 B.自然数 C.整数 D.负有理数

  (2)在以下说法中,正确的是[ ]

  A.非负有理数就是正有理数

  B.零表示没有,不是有理数

  C.正整数和负整数统称为整数

  D.整数和分数统称为有理数

  八、板书设计

  2.1数怎么不够用了(2)

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 例1、例2

  (四)课堂练习 练习设计

  九、教学后记

  在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的`数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

  为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

  1.分类的标准不同,分类的结果也不相同;

  2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

七年级数学教案10

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.

  2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:

  直线平行的条件的应用.

  学习难点:

  选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题)(第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是()

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则()

  A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的`纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

七年级数学教案11

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的.判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

七年级数学教案12

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的数集的.图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.

七年级数学教案13

  教学设计思路

  “问题是思考的开始”,问题的提出是数学教学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.

  教学目标

  知识与技能:

  1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.

  2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.

  过程与方法:

  经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力,提高语言表达能力.

  情感态度价值观:

  感受数学公式的简洁美、和谐美.

  重点难点

  重点:准确、熟练地运用法则进行计算.

  难点:负指数幂的条件及法则的正确运用.

  教学过程

  1.创设情境,复习导入

  前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

  (1)叙述同底数幂的`乘法性质.

  (2)计算:① ② ③

  学生活动:学生回答上述问题.

  (m,n都是正整数)

  教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.

  2.提出问题,引出新知

  我国研制的“银河”巨型计算机的运算速度是108次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍?

  怎样计算 呢?

  这就是我们这节课要学习的同底数幂的除法运算.

  3.导向深入,得出性质

  做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)

  按乘方的意义和除法计算:

  (1)

  (2)

  (3)

  (4)

  探究:(1)若a≠0,a15÷a5等于什么?

  (2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?

  学生思考,回答

  师生共同总结:

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  【公式分析与说明】提出问题:在运算过程当中,除数能否为0?

  学生回答:不能.(并说明理由)

  由此得出:同底数幂相除,底数 .教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:

  一般地,这就是说,同底数幂相除,底数不变,指数相减.

  尝试证明:

  4.揭示规律

  由此我们规定

  规律一:任何不等于0的数的0次幂都等于1.

  一般我们规定

  规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

  5.尝试反馈,理解新知

  (补充)例2 自从扫描隧道电子显微镜发明后,便诞生了一门新技术一纳米技术.纳米是长度单位,1 nm (纳米)等于 0.000 000 001 m .请用科学记数法表示 0.000 000 001.

  分析:绝对值较小的数可以用一个有一位整数的数与 10 的负指数幕的乘积的形式来表示.

  学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  6.反馈练习,巩固知识

  练习一

  (1)填空:

  ① ②

  ③ ④

  (2)计算:

  ① ②

  ③ ④

  学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2)

  (3) (4)

  学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

  总结、扩展

  我们共同总结这节课的学习内容.

  学生活动:①同底数幂相除,底数 ,指数 .

  ②由学生谈本书内容体会.

  教法说明:强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  6.小结

  本节主要学习内容:

  同底数幂的除法运算性质.

  零指数与负整数指数的意义.

  用科学记数法表示绝对值较小的数的方法.

  幂的运算与指数运算的关系: (m,n都是正整数); (a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.

  注意的地方:

  在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.

  7.布置作业

  P78 A组3、4 B组2、3

  8.板书设计

  8.3同底数幂的除法

  一、同底数幂的法则

  二、例题 练习

  例1 (补充)例2

七年级数学教案14

  教学目标:

  1、知道有理数加法的意义和法则

  2、会用有理数加法法则正确地进行有理数的加法运算

  3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

  教学重点:

  有理数加法则的探索及运用

  教学难点:

  异号两数相加的法则的理解及运用

  教学过程:

  一、创设情境

  展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

  (学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

  二、探求新知

  1、甲、乙两队进行足球比赛,

  (1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

  (2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

  足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

  (学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

  (3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

  (引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

  2、你能举出一些运用有理数加法的实际例子吗?

  (学生列举实例并根据具体意义写出算式)

  3、学生活动:

  (1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (3)、你还能再做一些类似的活动,并写出相应的算式吗?

  (教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的`是让学生从“形”的角度,直观感受有理数的加法法则。)

  4、归纳法则:

  观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

  (由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

  5、例题精讲:

  例1 、计算

  (1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

  (4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)

  解:(1)、(-5)+(-3)

  = -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)

  = -8

  (2)、(-8)+(+2)

  = -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)

  = -6

  (4)、5+(-5);

  =0 (互为相反的两数之和为0)

  6、训练巩固:

  1、 p33练一练2

  (学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)

  7、延伸拓展:

  (1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和

  (2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明

  (这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)

  三、课堂小结:

  学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

  四、布置作业:

  1、课本p41第1题

  2、列举一些生活中运用有理数加法的实际例子,并相互交流。

七年级数学教案15

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的.面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

【七年级数学教案】相关文章:

七年级数学教案02-15

七年级下册数学教案04-18

七年级数学教案(精选22篇)02-24

七年级数学教案(15篇)02-24

七年级数学教案精选15篇03-03

七年级数学教案15篇02-28

七年级下册数学教案8篇04-18

七年级数学教案合集15篇03-03

七年级下册数学教案9篇07-20