六年级上册数学教案

时间:2024-09-21 06:00:38 教案 我要投稿

六年级上册数学教案集锦15篇

  作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?以下是小编为大家整理的六年级上册数学教案,仅供参考,欢迎大家阅读。

六年级上册数学教案集锦15篇

六年级上册数学教案1

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的`体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

六年级上册数学教案2

  指导过程

  一、引探准备:

  1、 4个7连加是多少?怎样计算? 2、还可以怎样计算也得28呢? 3、如何列式?为什么这样列式? 4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的意义并计算。

  11、指书比较4/15×6还有更简便的`方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  1、3/18×6 2/5×15 3/7×6

  3、P3 1、2

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

  一、引探准备:

  1、 4个7连加是多少?怎样计算? 2、还可以怎样计算也得28呢? 3、如何列式?为什么这样列式? 4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的意义并计算。

  11、指书比较4/15×6还有更简便的方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  1、3/18×6 2/5×15 3/7×6

  3、P3 1、2

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

六年级上册数学教案3

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的'4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学教案4

  教学目标:

  1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。

  2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

  3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。

  教学重点:在方格纸用数对确定位置。

  教学难点:利用方格纸正确表示列与行。

  教学用具:动物园示意图的方格纸图。

  教学过程

  一、复习导入,提出学习目标。

  1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?

  2、揭题,提出学习目标。

  让学生先说说,再出示学习目标:

  (1)方格纸上什么线表示列,什么线表示行。

  (2)利用方格纸确定物体位置的方法。

  二、展示学习成果

  1、认识方格纸的列与行。

  竖线是列,横线是行。

  2、自主学习,小组内展示。

  (1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)

  (2)指名学生板演。

  3、全班展示。

  (1)问题1:熊猫馆在第3列第5行,用(3,5)表示;海洋馆在6列第4行,用(6,4)表示;猴山在第2列第2行,用(2,2)表示;大象馆在第1列第4行,用(1,4)表示。

  (2)问题2:让板演的学生说说是怎样标出各个场馆的位置。如:飞禽馆(1,1)在第1列第1行交__点上……

  三、拓展知识外延。

  1、完成练习一第3、4题。

  2、完成练习一第6题。

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?数对的哪个数字发生了改变?点A再向上平移5个单位,位置在哪里?数对的哪个数字也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。(小组内互相交流、探讨。)

  (4)观察平移前后的图形,说说你发现了什么?

  (5)汇报:图形不变,右移时,列变了,数对的第一个数字改变了,上移时,行变了,数对的第二个数字改变了。

  (6)学生质疑问难,激发知识冲突。

  a、针对同学的.汇报,学生自由质疑问难。

  b、教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

  四、归纳总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、作业:练习一第5、7题。

  六、教后记:

  让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。

六年级上册数学教案5

  本册教学目标

  一板书设计:

  二教后反思:

  (1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示 ×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的.积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  三、作业

  练习二第1、2、4题。个人修改

六年级上册数学教案6

  教学目标:

  1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

  2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

  3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

  4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

  教学重点

  理解百分率的含义,掌握求百分率的方法。

  教学难点:

  探究百分率的含义。

  教学用具:

  PPT课件

  教学过程:

  一、复习导入(8分)

  1、出示口算题,限时1分钟,并校正题目。

  2、小结学生所提问题,并指名口头列式。

  3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

  4、小结:算法相同,但计算结果的表示方法不同。

  5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

  6、口算比赛:(1分钟)(见课件)

  7、根据口算情况,提出数学问题。

  (做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

  8、尝试解答修改后的问题。

  9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

  10、举一些生活中的'百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

  二、设问导读(9分)

  1、说明达标率的含义。

  2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

  3、组织学生以4人小组讨论。

  4、巡回指导书写格式。阅读例题,思考下面的问题

  (1)什么叫做达标率?

  (2)怎样计算达标率?

  (3)思考:公式中为什么要“×100%”呢?

  (4)尝试计算例1的达标率。

  三、质疑探究(5分)

  1、在展示台上展示学生写出的百分率计算公式。

  2、要求学生认真计算,并对学生进行思想教育。

  1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

  2、求例1(2)中的发芽率。

  四、巩固练习(14分)

  1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

  2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

  3、出示问题,指导学生书写格式,并强调

  4、解决问题要注意:看清求什么率?找出对应的量。

  5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

  6、引学生观察、发现:出勤率+缺勤率=1.

  五、加强巩固

  1、说说下面百分率各表示什么意思。(1颗星)

  (1)学校栽了200棵树苗,成活率是90%。

  (2)六(1)班同学的近视率达14%。

  (3)海水的出盐率是20%。

  2、判断。(2颗星)

  (1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )

  (2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )

  (3)把25克盐放入100克水中,盐水的含盐率为25%。

  (4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

  3、解决问题(3颗星)

  (1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

  (2)六(1)班今天有48人到校,有2人缺席,求出勤率。

  (3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

  (4)王师傅加工的300个零件中有298个合格,合格率是多少?

  课堂总结:

  (1分)突出“关键点”。谈谈本节课的收获。

六年级上册数学教案7

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的'各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级上册数学教案8

  教学内容:

  教材第59页及相关题目。

  教学目标:

  1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

  2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

  3、培养学生观察周围事物的兴趣,提高观察能力。

  教学重点:

  认识圆的对称轴。

  教学难点:

  用圆设计图案的方法。

  教学准备:

  多媒体课件、圆规、直尺等。

  教学过程:

  学生活动(二次备课)

  一、复习导入

  1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

  师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

  2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

  学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。

  3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

  二、预习反馈点名让学生汇报预习情况。

  (重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

  三、探索新知

  1、设计美丽图案——花瓣。

  (1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

  (2)想一想,自己尝试画一画。可参考课本第59页的步骤。

  (3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

  小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

  2、设计美丽的图案——风车图。

  (1)观察图案,想一想如果画这个图案,应按怎样的步骤。

  (2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

  ①先画一个圆,在圆内画两条互相垂直的直径。

  ②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

  ③把所画半圆涂上颜色。

  3、设计美丽的图案——太极图。

  指名说一说画太极图的步骤:

  (1)画一个圆,在圆内画一条直径。

  (2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

  (3)把圆的一半涂上颜色,如图所示。

  四、巩固练习

  1、完成教材练习十三第6题。

  2、完成教材练习十三第8题。

  3、完成教材练习十三第9题。

  五、拓展提升

  观察图案,说一说下面两个图案的画法。

  六、课堂总结

  让学生说一说这节课的.收获。

  七、作业布置

  教材练习十三第7题和第10题的第1、4个图案。

  画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

  教学反思

  成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

六年级上册数学教案9

  一、教材分析:

  《圆的认识》是人教版小学数学六年级上册第五单元《圆》中的教学内容。本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

  二、学情分析:

  本课是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。圆是一种常见的、简单的曲线图形,在学习《圆的认识》以前,学生已经具备一定的生活经验,对圆有了初步的感性认识,小学生很难将圆的认识与生活中的数学问题联系起来,对圆的理性认识有一定的难度在上课时,加强与实际生活的联系,加强实践操作,让学生通过折、量、画的手段,在动手做中获得知识的体验,增强学习兴趣,达到顺利完成本节内容的目的。

  三、教学目标:

  1、认识圆,掌握圆的各部分名称及特征。

  2、理解同圆中或等圆中直径与半径的关系。

  3、会使用工具正确规范画圆,培养学生的作图能力。

  四、教学重难点:

  1、教学重点:感知并了解圆的基本特征,认识圆的各部分名称。

  2、教学难点:理解直径与半径的关系。

  五、课前准备:

  1、学生准备好圆规、直尺、圆纸片

  2、自带一个轮廓为圆的物体学生自带一两个轮廓为圆的小物品。

  六、教学过程

  (一)创设情境,激发兴趣

  1、让学生观察课本第57页的主题图,提问:同学们,现在请大家认真观察主题图看谁在这幅图上找到的圆多?学生汇报。(车轮、花坛、水池……)圆与我们的生活关系非常密切,谁还能举一些外形是圆的物体?学生汇报(钟面……)。老师也找了一些圆,我们一起来分享。

  3、引出课题,圆在我们的生活中密切联系,今天这节课我们就来一起学习“圆的认识”。

  4、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?长方形、正方形、平行四边形、三角形梯形

  (二)探索新知,动手发现

  1、“我能画”环节,学生用自己喜欢的方法画圆(不限定用圆规)(学生用圆柱、三角板中的小圆、直尺中小圆、茶杯盖)

  (1)先自己在纸上画圆,再和组内的同学说一说你画圆的方法。

  (2)小组交流:比较你组内的画法,你觉得哪种更好?

  2、自学课本第58页,找出有关的关健词,并把重点的或要注意的地方做上记号。

  3、动手折一折。折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)

  4、认识直径和半径。

  (1)将折痕用铅笔画出来,比一比是否相等?

  (2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

  (3)小结:连接圆心到圆上任意一点的线段,叫做半径。通过圆心并且两端都在圆上的线段,叫做直径。

  (4)出示“圆上、圆内、圆外”让学生理解。

  (三)认识圆的特征

  1、折一折、画一画、量一量、议一议,在小组里讨论:

  (1)在同一个圆里可以画多少条半径?多少条直径?

  (2)在同一个圆里,半径的长度都相等吗?直径呢?

  (3)同一个圆的直径和半径有什么关系?

  小结:在同一个圆里,有无数条直径,且所有的直径都相等。

  在同一个圆里,有无数条半径,且所有的半径都相等。

  2、直径与半径的关系。

  学生用尺子独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论。

  (四)教学用圆规画圆

  1、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

  (1)把圆规的两脚分开,定好两脚间的距离(即定半径);

  (2)把有针尖的一脚固定在一点(即圆心)上;

  (3)把装有铅笔尖的.一只脚旋转一周,就画出一个圆。

  2、请同学们用圆规画两个大小不同的圆,观察对比所画的两个圆,有什么不同?哪些地方不同(大小、位置)请同学们思考为什么两个圆会不相同呢?是什么决定圆的大小?(半径小,则圆小;半径大,则圆大。)

  圆的位置不一样,是因为固定点的位置不同,造成圆心的位置不一样,因此圆的位置不一样。

  小结:圆心决定圆的位置,半径决定圆的大小。

  3、练习:用圆规画一个半径是2cm的圆,并用字母o、r、d标出它的圆心、半径和直径。

  (五)巩固练习

  1、练习中深化认识圆

  2、判断是非

  (1)、在同一个圆内只可以画100条直径。( )

  (2)、所有的圆的直径都相等。( )

  (3)、圆的直径是半径的2倍。( )

  (4)、直径3厘米的圆比半径2厘米的圆要大些。( )

  (六)课堂小结,回顾知识

  1、教师:今天这节课,我们学习了什么知识?你有什么收获?

  2、布置作业:书本P60第1-4题。

六年级上册数学教案10

  学习内容

  教科书第54页例1,课堂活动第1题,练习十五第1~3题。

  育人目标

  1.在实际情境中理解按比例分配的意义。掌握按比例分配解决问题的方法,能正确解决简单的按比例分配的问题。

  2.经历探索按比例分配解决问题方法的产生过程,培养学生的分析问题、解决问题的能力。

  3.通过自主学习等活动发展学生自主探究的意识,渗透转化的数学思想,并从中感受数学与生活的密切联系。

  4.在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  1.能正确运用按比例分配的方法解答简单的数学问题。

  2.正确解决按比例分配的实际问题。

  学习评价设计

  1.学生思考用不同的策略来解决问题。

  2.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  教学过程

  情境引入

  同学们都有买文具的经历,请看大屏幕(实物投影出示与学生生活紧密联系的实例)几个同学凑钱批发文具,我们来看看他们是怎样买的?

  ①李芸和张倩各拿出8元钱,一共买了10支水彩笔。他俩该怎么分这些笔?

  学生回答后,教师及时做出评价,板书教学。

  ②这儿还有两个同学,也批发了一些文具,陈红拿出6元,赵青拿出4元,一共买了15本同样的笔记本。(指导学生读题)

  这两个同学怎样分这些笔记本?

  学生说出自己的想法,教师组织评议。

  小结得出:按拿钱的多少来分配笔记本最合理,这种分配方法通常叫做按比例分配。(板书课题:按比例分配(一)

  学生口答,独立思考,再交流:

  生:平均分,一人5支。

  生:陈红多点,赵青少点。

  在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  探究新知

  1.理解按比例分配的意义。

  把10支水彩笔平均分给两个同学,为什么要平均分呢?让学生理解,因为两人拿出的钱数同样多,也即拿出的钱数比是1:1,所以要平均分。

  陈红和赵青分笔记本,为什么不平均分呢?

  组织学生思考交流,因为两人拿出的钱数不一样多,再平均分是不公平的。要做到公平,应根据出钱多少来分配才合理。两人拿出的钱数的比是3:2,那么,15本笔记本应按3:2分配。

  最后,教师指出:像这样把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

  2.例举身边的事例,进一步理解按比例分配的意义。

  生活中还有很多这样的例子,需要把某一物品按照一定的比来进行分配,比如:实物投影出示物品配料标签。

  (1)某配方奶粉调配时,奶粉和水的比为1∶7,按照这个调配建议,我们在冲奶粉时能平均放奶粉和水吗?

  (2)市场上出售一种5升装的混合油,其中橄榄油与花生油的比是1∶1,这是一种什么样的分装方法?这5升油中,花生油有多少升?

  (组织学生分组讨论反馈.

  交流后,教师及时做出评价)

  你们在生活中有没有遇见这样的例子?介绍给大家听听。(学生举例)

  3.学习例1。

  同学们理解了什么是按比例分配,下面(第54页例1)大家开动脑筋,帮助陈红和赵青分一下笔记本,看看谁分配得最合理,分配的`方法最容易操作!

  (1)学生独立思考、计算,教师巡视指导

  (2)反馈学生做法,集体分析解法。

  方法1:陈红、赵青拿出钱数的比是:6∶4=3∶2

  解:设每份是x本。

  3x+2x=15

  5x=15

  x=3

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法2:先求出每份是多少本,再分别求出两人应分的本数。

  15÷(3+2)=3(本)

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法3:总份数是3+2=5,因为陈红应分的本数占15本的,赵青应分得本数占15本的,所以:陈红应分的本数:15×=9(本)。赵青应分的本数:15×=6(本)。

  答:陈红应分9本,赵青应分6本。

  学生交流解法,并说明解题思路。通过评价,鼓励学生用不同的策略来解决问题。

  (3)同学们想出了这么多不同的方法来解决问题,真棒!可是你们如何证明自己的解法是正确的?(引导学生用不同的方法进行检验)

  方法1:把求得陈红、赵青所分到的笔记本数加起来,看是否等于总数15本。

  方法2:把陈红、赵青所分到的笔记本数写成比的形式,看化简后是不是等于3∶2。

  (4)引导反思:这道题有什么特点?我们是怎样解决的?

  特点:把15本笔记本作为总量,按照给定钱数的比进行分配,像这种方法:用份数的思路解答;用分数的思路解答;用方程解答。

  如果按1∶1分配,是怎样分?

  指出:平均分是按比例分配的特例。

  独立思考再交流理解为什么要平均分。

  结合生活实例讨论交流理解按比例分配的实际意义。

  举例交流。

  学生独立完成再汇报交流不同的解题思路。

  用不同的方法进行检验。

  反思交流按比例分配这类型的特点及解题方法。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  巩固练习

  1.练习十五第1题(学生交流解法,并说明解题思路,并鼓励学生用不同的策略来解决问题。)

  2.学生独立完成练习十五第2、3题,完成后用投影仪集体订正。

  3.课件出示课堂活动第一题(阅读资料,结合自己班的人数,设计一个合适的比,将全班学生分成两部分来参加两项公益活动,然后全班交流。)

  学生独立完成,再交流不同的解题策略。

  课堂小结

  同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)在这么多解决问题的方法中,你最喜欢哪一种?为什么?

  谈收获。

六年级上册数学教案11

  教学目标

  1.利用知识的迁移规律,使学生理解比的基本性质。

  2.通过学生的自主探讨,掌握化简比的方法并会化简比。

  3.初步渗透事物是普遍联系和互相转化的辩证唯物主义观点

  教学重点

  理解并掌握比的基本性质

  课前准备

  课件、实物投影仪

  课时安排:

  1课时

  教学过程

  一、复习引入

  1.复习比和分数、除法之间的关系

  2.提问:比和除法,比和分数之间有那些联系?

  引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流

  3、出示三个分数:3÷4、6÷8、9÷12.变为比,并比较大小

  指名回答小组交流的结果.学生用语言表述比的基本性质。

  交流:比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫比的基本性质。

  教师引导交流:0除外是什么意思?

  学生交流,比的后项、除数是0没有意义。

  二、学习化简比

  1、说明:利用商不变的规律可以进行除法的简算;根据分数的`基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

  讨论.你怎样理解“最简单的整数比”这个概念?

  学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数.

  请个别学生举一个最简单的整数比。

  2、把下面各比化成最简单的整数比。(强调化成最简单的整数比—互质)

  14:2154:18

  教师引导交流:怎样把一个比化成最简单的整数比?

  总结方法:用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。或用求比值的方法算,最后结果仍然是个比。

  1÷10:3÷83/5:5/8

  教师引导交流:怎么把分数比化成最简单的整数比?

  总结方法:比的前项后项分别乘它们分母的最小公倍数,就化简成最简整数比。

  1.25:42.7:18

  教师引导交流:怎么把小数比化成最简单的整数比?

  总结方法:先将小数化成整数,再化简成最简单的整数比。

  3、练习:化简比

  60:245/8:7/245/4:0.75

  三、练习

  自主练习5、7、8

  四、小结:

  比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

六年级上册数学教案12

  教学内容:六年级上册第105页第七单元“数学广角”。

  教学目标:

  1、经历综合运用所学知识、技能和思想方法解决问题的过程,逐步形成综合应用知识的能力。

  2、通过多种途径查找资料,经历走进生活、材料收集、整理交流和表达,培养观察、搜集和处理信息的能力,感受数学与生活的联系。

  3、渗透思想品德教育,感受到节约用水的现实性和迫切性,增强节约用水的意识和行为,养成节约用水的良好习惯。

  教学重点:

  水龙头滴水速度的测算及折线统计图的绘制。

  教学难点:

  运用所测量的数据联系实际生活进行应用。

  课前准备:

  1、调查目前水资源现状,有条件的同学上网了解知识。

  2、观察生活中浪费水的现象,用图片或文字呈现出来。

  3、学生分组收集一个漏水龙头的漏水量。

  教学具准备:

  多媒体课件、统计表、铅笔、直尺、橡皮、量杯。

  教学过程 :

  一、情景激趣,引入课题

  师:老师给大家介绍一位非常熟悉的朋友,“双手抓不起,有刀切不开,煮饭和洗衣,都要请它来”。这是谁?

  生:这是水。

  师:同学们真棒!今天我们就来研究用水的问题。

  [设计意图:用谜语引入课题,既简单又贴切,激发学生的学习兴趣。]

  师:水一直被人们形容为“取之不尽,用之不竭”。是这样吗?(不是)请同学们谈谈你们的观点?(水是取之不尽,用之不竭的,可那只是海水,是不能饮用的,而淡水资源是有限的)

  师:请同学们将课前搜集的信息向大家汇报

  生1:地球上有70%多的地方都是水域,淡水只占地球水总量的3%,而在这3%的水当中,又有很多淡水在南极和北极的冰川中,因此只有极少数的水才能被人利用。

  生2:我知道每年的3月22日是“世界水日”。我国是世界是13个贫水国家之一。

  生3:今年4月发生三起水污染事件分别是:兰州、武汉、靖江。导致城市供水中断,市民上演“抢水大战”。

  师:同学们知道的真不少!

  师:对呀,这是我们蔚蓝迷人的地球,它同时有一个别名叫做水球。

  师:水资源组成,扇形统计图并简单讲解。(虽然全球水覆盖面积约70%,远远大于陆地,但陆地上的淡水仅占世界所有水资源中的2.6%,而可供人类轻易采用来维持生命的淡水,又仅占所有淡水的0.4%)

  下面是我国水资源分布情况,请同学们大声齐读

  生齐读:(我国的水资源人均占有量只有2300立方米,约为世界人均水量的四分之一,排在世界第121位,是世界山13个贫水国家之一。在我国的600多个城市中,有400多个城市缺水,其中有110个城市严重缺水。)

  师:我们一起来看看这些资料

  师:是什么原因导致了大量的缺水?

  师小结:正是环境的破坏,导致了大量的缺水,因为缺水,导致大片良田

  干涸,颗粒无收;因为缺水,沙漠正一步步吞噬着生机盎然的绿洲;因为缺水,人们的日常饮用水受到严重威胁。当我们看到这些画面时,我们是否感到心情沉重难过,我们需要发出怎样的呼喊?

  (学生可能回答:节约用水。)

  师:板书课题:节约用水。

  [实时评析:课堂上连续呈现几幅部分地方缺水的生活场景图,学生受到极大的震撼,因而从心灵深处发出要“节约用水”的呼喊。教育学生应节约用水,并感受节约用水的迫切性。]

  二、实验探究、综合运用

  (一)估算一个水龙头一天的漏水量。

  师:在日常生活中,我们常常碰到这样情况:水龙头坏了或没有关紧,水一滴一滴往外流,遇到这种情况,你会怎么做?

  (学生可能回答:我会想办法去关掉。)

  师:那么我们来估算一下一个漏水的龙头一天大概浪费多少水呢?

  (学生可能回答:“一桶吧”;“一杯水”;“四五桶吧”;“十个脸盆吧”;……)

  (二)收集信息

  师:到底谁说得最接近?课前老师布置大家收集一个漏水龙头的漏水量。现在请各小组代表将收集情况汇报一下。包括收集地点、漏水量大小、收集时间。

  (水龙头漏水量统计表,生汇报,师输入信息)

  (三)整理数据,填写统计表

  水龙头漏水量统计表

  小组编号 一 二 三 四 五 六

  收集用时 (分)

  收集漏水量(毫升)

  每分钟漏水量(毫升)

  1、分析数据,回答问题:

  (1)师:每个水龙头每分钟漏水量一样吗?为什么不一样?(不一样,有的快一点,有的慢一点。)

  那大家把每一个水龙头的每分钟的漏水量算出来吧。(生齐汇报,师输入数据)

  (2)师:我们任意选其中一个龙头的漏水量能代表所有水龙头的漏水量吗?(不能)

  2、复习统计知识

  (1)师:怎样才能表示全班同学调查到的水龙头漏水的一般水平呢?

  (生:选中位数,当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的一般水平就比较合适。)

  师:那么这组数据的是中位数是多少?是怎么算的,哪位同学汇报一下?

  生:答略

  师:板书:中位数25毫升

  3、计算,完成统计表和统计图

  (1)计算平均每一个水龙头一小时的漏水量是多少升?(注意单位是升)

  (2)现在我们就用这组数据具体计算一下,究竟一天能滴多少水呢?把你们计算的结果填入老师发下来的表格中。

  (3)师输入数据

  (4)根据统计表格绘出一个相应的统计图。

  (5)展示学生绘制的统计图。

  (6)出示师绘制的统计图

  (7)说说从这张统计图中你们感受到什么?水龙头的漏水量随时间的变化 是怎么变化的?(生:1.发现漏水量随时间的增加而增多。2.漏水量与对应时间的比值始终不变(即每分钟漏水量一定)。3.时间是原来的几倍,漏水量也是原来的几倍。)

  4、一个水龙头一年浪费的水量。

  师:到底浪费的多吗?我们来计算一下,如果按照这样的滴水速度,一个水龙头一年大约浪费多少水呢?师:1000升水是1吨,想一想,一个水龙头一年大约浪费了多少吨水呢?

  [实时评析:通过让学生亲自参与测量、收集和整理数据,计算水龙头的滴水速度,不仅渗透了函数的思想方法,而且使学生经历了综合运用所学的数学知识、技能和思想方法解决解决问题的过程,逐步形成学生的实践能力。]

  三、联系实际、解决问题。

  1、师:虽然一个漏水龙头一分钟的漏水量并不多,但如果不加以注意控制,一小时、一天、一年浪费水的量是惊人的'。我们日常生活中比如在家里、学校有没有浪费水资源的现象。

  生(答略)

  师:有哪些?

  生(答略)

  2、师:昨天午餐,我在我们学校水池边看到同学们在洗碗洗手时,老师想到这样一个问题,平时我们在洗碗洗手时能不能节约用水?于是老师带来了这样一组数据:

  (1)如果洗手时把水龙头拧小,每次大约能节约几升水?

  (2)照这样计算,如果每人每天洗手5次,一天可以节约多少水,一年呢?

  (3)师:照这样计算,全国13亿人每人每天节约多少吨水?

  (4)师:如果每吨水2元,大约浪费水费多少元?

  (5)师:如果每套新桌椅200元,可购买多少套供全国小学生使用?

  [实时评析:通过计算的结果,他们的感官受到强烈的冲击,意识到浪费水的严重程度如此触目惊心,感悟节约用水的重要性、必要性和迫切性,培养学生的节水意识。]

  四、讨论深化 明理导行

  1、同学们,通过刚才的学习、讨论,在今后我们的学习中,我们一定要做到(节约用水),那我们怎样才能做到节约用水呢?

  (学生可能回答:我们在平时用水的时候,应注意把水龙头开至适量的位置,用完后要拧紧水龙头。)

  (学生可能回答:碰到水龙头没关紧的,要把它关好。)

  (学生可能回答:用了的水先把他装好,可以用来打扫卫生用,或者浇花、种草。)

  2、节水措施

  五、小结

  1、畅谈收获:

  师:今天这节课与大家共同探究知识,老师很开心!老师有不少收获感受,那你们通过今天的学习有哪些收获与感受呢?(生略)

  2、节水倡仪:

  师:同学们,水资源是有限的,让我们向家庭、学校和社会发出倡议,让我们大声读这段话(节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。)

  [实时评析:让学生意识到在水资源如此紧缺的情况下,不仅自己要节约用水,而且要让全社会提高节约用水的意识。]

  3、欣赏水之歌(同学们进一步感受到水资源的可贵)

  师小结:同学们,让我们携起手来,从我做起,从现在做起,节约每一滴水,让我们的生命之水源远流长,让我们的家园更加美好。下面请欣赏水之歌来结束今天这节课!

  [课后总评: 这节课,努力营建了多层次、立体型的课堂空间,从学生已有的数学经验和生活经历出发,关注学生的内在潜能,着眼于学生的终身发展,积淀一种数学文化,学会用数学眼光观察、思考,学会理性的、有创意的生活。“节约用水”教学中,尝试把学生的学习活动建立在学生自觉关注、主动探索的基础上,通过师生、生生之间和谐有效的互动,增强了学生的自我意识,时时处处用事实来说话。学生经历了自主探索与合作交流的学习活动后,对“节约用水”认识已经不只是停留在“浪费水就是浪费钱”这一表层认识上,而能从珍惜“世界水资源”的角度去衡量自己的行为,认识身边的现象,把“节约用水”内化为自己的行为。]

六年级上册数学教案13

  教学内容:第1~2页,例1及“做一做”,练习一1—7题。

  教学目的

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1、出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

  2、引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1、教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:

  师:每人吃块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。

  (3)比较和12×5两种算式异同:

  提示:从两算式表示的`意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。

  不同点:是分数乘整数,12×5是整数乘整数。

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2、教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。

  问:表示什么意义?引导学生说出表示求3个的和。板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)

  观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。

  (3)概括总结:

  请根据观察结果总结的计算方法。(互相讨论)

  汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

  根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3、反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  =()×()

  3个是多少?5个是多少?

  订正时让学生说一说为什么这样列式。

  (3)计算:

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

六年级上册数学教案14

  教学内容:课本第14~15页的例1,完成“做一做”和练习四的第1~5题。

  教学目的

  1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、培养学生分析能力,发展学生思维。

  教学重点:理解题中的单位“1”和问题的关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教学过程

  一、复习

  2、列式计算。

  (1)20的是多少?

  (2)6的是多少?

  二、新授。

  1、教学例1。

  出示例1:学校买来100千克白菜,吃了,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示“100千克白菜”。

  吃了,吃了谁的?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图:

  (3)分析数量关系,启发解题思路。

  A请同学们仔细观察图画,并认真想一想,吃了,是吃了哪个数量的?

  B分组讨论交流:依据吃了100千克的.把哪个量看作单位“1”呢?为什么?你是怎样想的?

  (4)列式计算。

  A学生完整叙述解题思路。

  B学生列式计算,教师板书:(千克)

  C写出答话,教师板书:答:吃了80千克。

  (5)总结思路。

  根据以上分析,让学生讨论一下解题顺序:吃了?吃了谁的?谁是多少(已知)?谁的是多少乘法。

  (6)反馈练习。(14页)1—3题,做完后订正。说一说你是怎样想的?

  2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

  (三、全课小结:

  四、随堂练习。

  1、判断下面每组中的两个量,应该把谁看作单位“1”。

  (1)乙是甲的,甲是乙的。

  (2)甲是乙的,乙是甲的倍。

  2、练习四1、2题,完成在练习本上,然后订正。

  3、操作:画出“体育小组的人数是美术小组的倍”的线段图自己补充条件和问题并解答。

  五、作业

  练习四3、4题。

六年级上册数学教案15

  复习内容:课本第22页练习六。

  复习目的:

  1、使学生进一你好理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。

  2、使学生进一你好理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。

  3、使学生进一你好理解倒数的意义并掌握求倒数的方法。

  复习过程:

  (一)导入:板书:整理和复习

  (二)整理。

  1、启发学生回忆整数乘法的意义:5个12是多少?怎样列式。

  使学生明确:5×12或12×5

  求几个相同加数的和的简便运算。

  2、启发学生回忆本单元学过的分数乘法的意义:

  使学生明确:8/15×5,5个8/15的和,

  8/15+8/15+8/15+8/15+8/15=8/15×5

  分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  3、一个数乘以分数的意义,就是求这个数的几分之几是多少?

  使学生明确:24×3/8就是求24个3/8是多少,7/18×9/14就是求7/18的9/14是多少,是对整数乘法的的扩展。

  练习:练习七的第3题。

  板书:

  分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变,为了计算简便,能约分的要先约分,然后再乘。

  一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母,为了计算的简便,也可以先约分再乘。

  使学生明确:分子相乘的`积作分子,分母相乘的积作分母。

  板书:

  应用乘法交换律应用乘法结合律应用乘法分配律

  练习:练习七的第4、5题。

  5、口算

  练习七1、10题。

  6、分数应用题。

  (1)把谁看作单位“1”

  六年级参加数学小组的有36人,语文小组的人数是数学小组的,体育小组的人数是语文小组的倍。体育小组有多少人?

  (2)练习。

  ①打字员打一部书稿,每天完成,5天完成这部书稿的几分之几?

  ×5

  ②立新小学六年级有学生155人,其中的参加科技活动小组,参加科技活动小组的有多少人?

  155×

  ④党校食堂九月份用煤560千克。十月份计划用煤是九月份的,而十月份实际用煤比原计划节约,十月份比原计划节约用煤多少千克?

  560× ×

  7、倒数:整理和复习第7题。

  堂上练习:

  1、练习七第2题,抢答,小组练习。

  2、练习七的第3、11题。

  3、练习七的第16、17题。

  作业:

  练习七的第12—15题。

【六年级上册数学教案】相关文章:

六年级上册数学教案10-19

苏教版六年级上册《练习课》数学教案04-08

六年级上册数学教案精选15篇01-31

六年级上册数学教案(15篇)01-19

六年级上册数学教案15篇01-13

六年级上册数学教案(精选15篇)02-04

六年级上册数学教案(汇编15篇)01-31

六年级上册数学教案通用15篇02-14

六年级上册数学教案汇编15篇01-31

六年级上册数学教案(集锦15篇)03-26