六年级上册数学教案

时间:2024-07-14 17:37:17 教案 我要投稿

六年级上册数学教案汇编15篇

  作为一位不辞辛劳的人民教师,通常需要准备好一份教案,借助教案可以提高教学质量,收到预期的教学效果。如何把教案做到重点突出呢?下面是小编精心整理的六年级上册数学教案,欢迎阅读与收藏。

六年级上册数学教案汇编15篇

六年级上册数学教案1

  教学内容:

  纳税

  教学目标:

  1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

  2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

  3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  4、进行学科教学渗透法制教育,主要渗透《宪法》第56条,《中华人民共和国税收征收管理法》第4条,《中华人民共和国个人所得税法》第1条。

  教学重点:

  税额的计算。

  教学难点:

  税率的理解。

  教学过程:

  一、复习

  1、口答算式。

  (1)100的5%是多少?

  (3)1000元的8%是多少?

  2、什么是比率?

  二、新授

  2)50吨的10%是多少?

  (4)50万元的20%是多少?(

  1、阅读p122页有关纳税的内容。说说:什么是纳税?

  进行学科教学渗透法制教育,渗透《宪法》第56条,《宪法》第56条规定:中华人民共和国公民有依照法律纳税的义务。

  2、税率的'认识。

  (1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

  进行学科教学渗透法制教育,渗透《中华人民共和国税收征收管理法》第4条,《中华人民共和国税收征收管理法》第四条规定:法律、行政法规规定负有纳税义务的单位和个人

  为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。

  (2)试说以下税率表示什么。

  a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

  b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

  3、进行学科教学渗透法制教育,渗透《中华人民共和国个人所得税法》第1条,《中华人民共和国个人所得税法》第1条规定:在中国境内有住所,或者无住所而在境内居住满一年的个人,从中国境内和境外取得的所得,依照本法规定缴纳个人所得税。在中国境内无住所又不居住或者无住所而在境内居住不满一年的个人,从中国境内取得的所得,依照本法规定缴纳个人所得税。

  4、税款计算

  (1)出示例5(课本99页)

  一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  (2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

  (3)要求“应缴纳营业税款多少”就是求什么?

  (4)让学生独立完成?

  5、看课本98页内容。读一读,什么是纳税?什么是税率?

  三、练习

  1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

  2、依据第5题,学生各自发表意见。

  板书设计

六年级上册数学教案2

  教学目标:

  1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

  2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

  3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

  4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

  教学重点

  理解百分率的含义,掌握求百分率的方法。

  教学难点:

  探究百分率的含义。

  教学用具:

  PPT课件

  教学过程:

  一、复习导入(8分)

  1、出示口算题,限时1分钟,并校正题目。

  2、小结学生所提问题,并指名口头列式。

  3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

  4、小结:算法相同,但计算结果的表示方法不同。

  5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

  6、口算比赛:(1分钟)(见课件)

  7、根据口算情况,提出数学问题。

  (做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

  8、尝试解答修改后的问题。

  9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

  10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的`问题。

  二、设问导读(9分)

  1、说明达标率的含义。

  2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

  3、组织学生以4人小组讨论。

  4、巡回指导书写格式。阅读例题,思考下面的问题

  (1)什么叫做达标率?

  (2)怎样计算达标率?

  (3)思考:公式中为什么要“×100%”呢?

  (4)尝试计算例1的达标率。

  三、质疑探究(5分)

  1、在展示台上展示学生写出的百分率计算公式。

  2、要求学生认真计算,并对学生进行思想教育。

  1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

  2、求例1(2)中的发芽率。

  四、巩固练习(14分)

  1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

  2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

  3、出示问题,指导学生书写格式,并强调

  4、解决问题要注意:看清求什么率?找出对应的量。

  5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

  6、引学生观察、发现:出勤率+缺勤率=1.

  五、加强巩固

  1、说说下面百分率各表示什么意思。(1颗星)

  (1)学校栽了200棵树苗,成活率是90%。

  (2)六(1)班同学的近视率达14%。

  (3)海水的出盐率是20%。

  2、判断。(2颗星)

  (1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )

  (2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )

  (3)把25克盐放入100克水中,盐水的含盐率为25%。

  (4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

  3、解决问题(3颗星)

  (1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

  (2)六(1)班今天有48人到校,有2人缺席,求出勤率。

  (3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

  (4)王师傅加工的300个零件中有298个合格,合格率是多少?

  课堂总结:

  (1分)突出“关键点”。谈谈本节课的收获。

六年级上册数学教案3

  一、教学内容

  比的应用的练习课。(教材第55~56页练习十二第3~7题)

  二、教学目标

  1、复习巩固按比分配问题的'解题方法。

  2、进一步培养学生应用知识解决实际问题的能力。

  三、重点难点

  重难点:会灵活运用按比分配问题的解题方法解决实际问题。

  四、教学过程

  一、基础练习

  1、师:比的意义和基本性质是什么?(点名学生回答)

  2、教材第55页练习十二第5、6题。

  (学生独立完成,集体订正)

  3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

  引导学生回顾按比分配的两种解题方法。

  二、指导练习

  1、教学教材第55页练习十二第3题。

  (1)组织学生观察图画,理解题意,了解信息。

  (2)组织学生小组讨论,如何解决问题。

  教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

  (3)交流后,学生独立完成,集体订正。

六年级上册数学教案4

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的'联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级上册数学教案5

  一、教学内容

  运用比解决问题。(教材第54页例2)

  二、教学目标

  1、能运用比的意义解决按照一定的比进行分配的实际问题。

  2、进一步体会比的意义,感受比在生活中的`广泛应用,提高解决问题的能力。

  3、掌握按比分配问题的结构特点及解题方法,发展分析、概括能力。

  三、重点难点

  重点:理解并掌握按比分配问题的特点和解题方法。

  难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。

  教学过程:

  一、复习引入

  1、师:比的意义是什么?

  引导学生回顾比是什么。

  2、一盒糖果有50颗,平均分给甲、乙两人,甲、乙两人各得多少颗糖果?他们所得糖果数的比是多少?(课件出示题目)

  点名学生回答,回顾平均分的特点。

  3、引出新课。

  师:这是一道平均分的问题,生活中,很多问题运用到了平均分,但有时为了分配合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比分配,就是我们今天要学习的比的应用。(板书课题:比的应用)

  二、学习新课

  教学教材第54页例2。

  (课件出示教材第54页例2)

六年级上册数学教案6

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的.,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:0.2的倒数是多少?

  五、小结:请学生说一说这节课学习了哪些内容。

  六、作业:练习五3—8。

六年级上册数学教案7

  学习内容

  教科书第55页例2,课堂活动第2题,练习十五第4~7题。

  育人目标

  1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

  2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

  3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

  4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  重点:把两个数比的问题的解题方法推广到三个数连比的问题。

  难点:理解三个数连比的问题的解题方法。

  学习评价设计

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  教学过程

  导入新课

  1.填空。(多媒体出示题目)

  (1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

  (2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

  学生回答反馈,说说怎样思考,集体评价。

  2.引入谈话:怎样解决按比例分配的问题?

  在实际生活中还有哪些问题可以用按比例分配的方法解决?生举例。(组织学生分组讨论.

  反馈.

  交流后,老师及时做出评价)

  在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

  独立思考再交流方法和结果,集体评价。

  举例,分组讨论、反馈、交流。

  探究新知

  1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

  要配制220吨混凝土,水泥、沙子、石子的比是:2∶3∶6,需要水泥、沙子、石子各多少吨?

  2.教师组织学生讨论:这道题与前面所做的`题有什么区别?怎样解答?

  生1:前面所做的题都是两个量的比,这道题是三个量的比。

  生2:可以仿照上节所学的按比例分配方法去解。

  3.学生尝试解答,教师巡视。

  4.展示学生解法,说出解题思路。

  方法1:220÷(2+3+6)=20(吨)

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

  答:需要水泥40吨,需要沙子60吨,需要石子120吨。

  方法2:总份数:2+3+6=11

  需要水泥的吨数:220x2/11=40(吨)

  需要沙子的吨数:220x3/11=60(吨)

  需要石子的吨数:220×6/11=120(吨)

  方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

  解:设每份是x吨.

  2x+3x+6x=220

  11x=220

  x=20

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

  5.议一议:怎样解决按比例分配的问题?

  学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

  学生交流获取的信息。

  讨论交流异同。

  尝试解答,再展示交流解题思路。

  独立思考,再小组交流、小结解决按比例分配问题的一般方法。

  在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  在按比例分配的过程中,感受分配方案的简洁美、理性美。

  巩固练习

  1.课堂活动第2题。

  根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

  2.一堆混凝土中沙子有100kg,石子有60kg,水泥有240kg。要配制180吨这样的混凝土,需要沙子、石子、水泥各多少吨?

  教师组织学生讨论:这道题与前面所做的题有什么区别?

  引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

  学生讨论后尝试独立解题。完成后交流解决问题的方法。

  刚才同学们通过上题计算,知道混凝土中沙子、石子、水泥的比为5∶3∶12。现有一堆总重为40吨的混凝土,经现场测量,水泥有20吨,沙子有12吨,石子有8吨。这堆混凝土符合配比吗?

  再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  学生讨论找到方法。

  独立解题,再交流解题方法。

  讨论交流得出结论。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  课堂小结

  想一想,今天学习的知识与昨天有什么不同?又有什么相同?

  谈收获。

  课堂作业

  练习十五第4—7题。

  独立完成。

六年级上册数学教案8

  教学内容:第1~2页,例1及“做一做”,练习一1—7题。

  教学目的

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1、出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

  2、引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1、教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:

  师:每人吃块蛋糕,每人吃的.够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。

  (3)比较和12×5两种算式异同:

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。

  不同点:是分数乘整数,12×5是整数乘整数。

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2、教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。

  问:表示什么意义?引导学生说出表示求3个的和。板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)

  观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。

  (3)概括总结:

  请根据观察结果总结的计算方法。(互相讨论)

  汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

  根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3、反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  =()×()

  3个是多少?5个是多少?

  订正时让学生说一说为什么这样列式。

  (3)计算:

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

六年级上册数学教案9

  教学目标 1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学

  关键 培养学生分析和解决实际问题的能力

  教学

  重点 复习分数乘除法应用题,掌握解题方法。

  教学

  难点 找准单位“1”

  教具

  准备 多媒体课件

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

  五、巩固练习

  练习八的3-5题

  师:下面请同学们独立进行计算,完成练习八P118第3题和第4题。

  (1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?

  (2)、根据题意分析数量关系,然后列式计算,全班讲评。

  (3)、出示P118页5题。

  提问:把谁看作单位“1”?

  结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的。

  【教学课件演示】

  加强解题思维的训练,沟通新旧知识,沟通解决问题的方法。

  六、强化练习

  1、完成练习二十七的第7题:

  3个同学跳绳。小明跳了120个,小强跳的是小明跳的5/8,小亮跳的是小强的2/3,小亮跳了多少个?

  渗透健康教育:

  跳绳运动,是对付肥胖、预防血脂异常、高血压最切实可行的方式,也是一个很好的锻炼耐力的有氧代谢运动。同学们要积极进行跳绳运动,

  学生独立进行思考计算,请个别同学讲解回答。

  2、练习二十七的第8题,练习二十七的第9题。

  (1)一个县去年绿色蔬菜总产量720万千克,是今年绿色蔬菜总产量的9/10。今年全县绿色蔬菜总产量是多少万千克?

  (2)一个县去年绿色蔬菜总产量720万千克,比今年少了1/10,今年全县绿色蔬菜总产量是多少万千克?

  渗透健康教育:

  绿色蔬菜含维生素U较多是抗癌、防癌的'复合剂,对胃溃疡高血压、动脉硬化、视网膜出血、紫癜以及出血性肾炎等疾病有治疗效果多吃的蔬菜会对胃肠功能的恢复有所帮助。

  【教学课件演示】

  强化数量关系的分析,强化方程的解法,体现解法的多样性、解法的最优化,提高学生自主意识和优化意识。

  通过强化练习提升学习水平,让各种类型的学生都有所提高。

  七、课堂总结

  今天你都学会了什么?有什么收获?今天我们学习了应用题,解答这类应用题要先找准单位“1”和相等的数量关系,再确定算法,然后列式计算,先找单位1,再看知不知,已知用乘法,未知用除法,比1多就加,比1少就减”。

  【教学课件演示】 帮助学生抓住解题的重点,已知单位“1”的用什么方法解,不知道单位“1”的又用什么方法解。帮助学生进行数学知识网络的建构。

  八、作业:

  练习二十七的第8、10题 【教学课件演示】

  板书:

  分数乘除法应用题复习

  根据条件分析单位“1”和找准对应分率。

  用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。

  用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。

六年级上册数学教案10

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的'意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学教案11

  第一单元:分数乘法

  第一课时:分数乘以整数

  教学内容:第1~2页,例1及“做一做”,练习一1-7题。

  教学目的:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1.出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  123333??????666101010

  计算333??时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加101010

  数都相同,计算时3个3连加的结果做分子,分母不变。

  2.引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1.教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:师:每人吃2块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。9

  222问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生999

  用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)2222?2?262订正时教师板书:++===(块),(教师将3个双层扇形图片拼成一个一块999939

  2蛋糕的图片)3

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数

  22的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:?3。再启发学生说出?3表99

  2示求3个相加的和。9

  2(3)比较?3和12×5两种算式异同:9

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。2不同点:?3是分数乘整数,12×5是整数乘整数。9

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2.教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。22222问:?3表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,99999

  教师板书:2?2?22?362??。提示:分子中3个2连加简便写法怎么写?学生答后板书:9993(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:2?32的分子部分、分母与算式?3两个数有什么关系?(互相讨论)99

  观察结果:2?32的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。99

  (3)概括总结:

  2请根据观察结果总结?3的计算方法。(互相讨论)9

  22汇报结果:(多找几名学生汇报)使学生得出?3是用分数的分子2与整数3下乘的积99

  作分子,分母不变。

  2根据?3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得9

  2的数要与原数上下对齐。然后让学生将?3按简便方法计算。9

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3.反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  3333???=()×()4444

  3个13是多少?5个是多少?1010

  订正时让学生说一说为什么这样列式。

  (3)计算:

  25?4?81512

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

  第二课时:一个数乘以分数

  教学内容:课本第4-6页,例2,例3及“做一做”,练习二1-4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  153?5?1?21087

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的.意义和计算方法。(板书课题:一个数乘以分数)1.理解一个数乘以分数的意义。3(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?5

  3指名列式,板书:?35

  333问:?3表示什么意思?指名回答,板书:或求的3倍。555

  3(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?5

  指名回答:半瓶用131表示;式子为:?。252

  3133131说明:?是求的一半是多少,也就是求的是多少。板书:求的。5255252

  32(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?53

  323232指名回答,板书:?,问:?表示什么意思?指名回答,板书:求的。535353

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  .课本的做一做1、2题。

  .说一说下列算式的意义。533?8?754

  3.理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  11得出:根据“工作效率×工作时间=工作总量”列出式子:?。25

  问:如果我们用一个长方形表示1公顷,那么

  学生回答后,教师出示例3的图(1)11问:公顷的是什么意思?251公顷怎样表示?2

  出示例3图(2)

  要求学生观察图(2),问:在图中

  111?11?引导得出:??252?51011的对于1公顷来说,是1公顷的几分之几?25

  观察这个式子有什么特点?

  出示例3的第二个问题。

  学生列式,教师再出示例3图(3)11131问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?252?525

  131?33?板书:??公顷)252?510

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。323?22?例:??535?35

六年级上册数学教案12

  一、教学内容:

  苏教版六年级上册68-77页

  二、教材分析:

  《认识比》是苏教版六年级上册中第五单元内容,是本册教材的教学重点之一。教材密切联系学生已学有的学习经验和生活经验过,设置了多种情境图。通过对这部分内容的教学,不仅能够发展对除法与分数的认识,进一步沟通知识间的联系,还能够加深学生对比的性质、比的应用理解。

  三、学情分析:

  学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的内在联系,完善认知结构,为以后进一步学习比例及其它方面的知识打好基础。

  四、教学目标:

  1.知识技能:使学生在具体的情境中理解比的意义,掌握比的读法、写法,知道比的各部分名称,要会求比值。

  2.过程与方法:使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3.情感态度与价值观:使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  五、教学重点:

  理解比的意义;理解比与分数、除法的关系。

  六、教学难点:

  理解比与分数、除法的关系,在生活中发现比,感受比。

  七、教具准备:

  多媒体课件、学生自备三角板一副

  八、教学过程:

  1.创设情境,引入比

  课件出示例1问:图上有什么?(2杯果汁,三杯牛奶)想一想:可以怎样表示这两个数量之间的关系?根据学生回答课件呈现:牛奶比果汁多一杯;果汁比牛奶少一杯果汁的杯数是牛奶的;牛奶的杯数是果汁的板书:2÷3=

  3÷2=

  小结:两个数量相比较,既可以用减法来比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。其实,在比较两个数量之间的关系时,还可以用比来表示。这就是我们今天一起学习的新内容——认识比(板书)

  2.自主探究,认识比

  (1)用比表示两个同类量之间的相除关系

  (2)用比表示两个不同类量之间的相除关系

  (3)揭示比的意义。观察屏幕上的几个比,想一想两个数的比可以表示什么?想好以后和你的同桌讨论一下。(小组交流、全班交流)

  小结:分数就是除法,比与除法有关系,两个数的.比表示两个数相除,比的前项除以比的后项得到的商就是比值。问:比的后项能为0吗?

  不能

  (4)课件出示

  3.自主练习,应用比

  学生独立完成课本P70“练一练”1、2、3

  4.拓展延伸,感受比

  你听说过“黄金比”吗?黄金比的比值约等于0,618。从古希腊以来,一直有人认为把黄金比应用于造塑艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。能找找看吗?

  5.课堂小结:两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。

六年级上册数学教案13

  教学目标

  1、理解一个数乘分数就是求一个数的几分之几是多少。

  2、掌握分数乘分数的计算方法,并能正确地进行计算。

  教学重点/难点

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的乘法意义及算理。

  教学用具

  课件标签

  教学过程

  一、旧知铺垫说一说,分数乘法的计算方法、步骤。

  (1)整数与分子相乘的乘积作分子,分母不变。

  (2)能约分的要先约分,再计算

  二、探索新知

  教学例出示题目:

  (1)你想怎样列式?学生回答,教师板书。

  (2)分数乘分数怎样计算?

  (3)画示意图分析。

  (4)发现分数乘分数的计算方法。

  (5)引导学生观察算式和结果,看一看其中的.联系。

  想一想:虚线框中,应该是怎样的一个计算过程呢?学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

  然后,联系以上的算式,让学生说一说计算方法。

  学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

  (1)引导学生列出算式

  (2)你认为计算结果是多少?学生回答,教师板书

  (3)画示意图加以验证。

  (4)总结分数乘分数的计算方法。

  师生共同总结,教师板书:

  分数乘分数,应该分子乘分子,分母乘分母。

  1、教学例出示教材例题,学生简要了解蜂鸟。

  2、学生尝试计算,教师巡视课堂了解学生计算情况。完成后,选择两位不同计算过程的学生上台板演。

  3、强调:能约分的要先约分,再计算。

  (2)5分钟能飞行多少千米?

  ①学生独立列式解答,请一位学生上台板演。

  ②教师出示算式,学生判断可以不可以。

  ③说明分数和整数相乘时约分的方法。

  强调:整数约分后的结果要写在整数的上面,并与分子相乘。

  三、巩固练习完成例题后“做一做”四、课后作业设计完成练习二第3、4题?课后习题完成练习二第3、4题

六年级上册数学教案14

  教学内容:课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  二、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  三、自学新课:

  自学书本P19。并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  四、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的'乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  五、练习

  1、判断下列各组数是否互为倒数,为什么?

  和和和和

  2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?

  1)5的倒数是多少?

  2)所有的自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  4、完成课本P19页的“做一做” 。

  5、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:练习五3—8。

六年级上册数学教案15

  教学内容:一个数乘以分数及其应用题。

  教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

  教学过程:

  一、只列式不计算

  1)两地相距4千米,小明行了4/5千米,还剩多少千米?

  2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

  二、发展练习

  (1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

  (2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

  (3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

  (4)每小时骑车行11千米,这4小时一共行多少千米?

  2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?

  3、食堂运来24吨的'煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?

  4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  五、作业:练习四第11—15题。

【六年级上册数学教案】相关文章:

六年级上册数学教案10-19

苏教版六年级上册《练习课》数学教案04-08

六年级上册数学教案精选15篇01-31

六年级上册数学教案(15篇)01-19

六年级上册数学教案15篇01-13

六年级上册数学教案(精选15篇)02-04

六年级上册数学教案(汇编15篇)01-31

六年级上册数学教案通用15篇02-14

六年级上册数学教案(集锦15篇)03-26