五年级下册数学教案

时间:2024-09-27 21:37:31 教案 我要投稿

五年级下册数学教案【热门】

  作为一名老师,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们该怎么去写教案呢?下面是小编整理的五年级下册数学教案,仅供参考,希望能够帮助到大家。

五年级下册数学教案【热门】

五年级下册数学教案1

  教学内容:

  教材第xx页的内容及第xx页练习的第x题。

  教学目标:

  1.理解两个数的公倍数和最小公倍数的意义。

  2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  教学重点:

  理解两个数的公倍数和最小公倍数的意义。

  教学难点:

  自主探索并总结找最小公倍数的方法。

  教学具准备:

  多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

  教学方法:

  小组合作谈话法。

  教学过程:

  一、创设情景,生成问题:

  前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

  二、探索交流,解决问题

  1.在数轴上标出4、6的倍数所在的点

  拿出老师课前发的画有两条直线的纸。

  在第一条直线上找出4的倍数所在的`点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

  2.引入公倍数

  (1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

  (2)观察:从4和6的倍数中你发现了什么?

  (3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

  (4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

  说说看,什么叫两个数的公倍数?

  3.用集合图表示

  如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

  4.引人最小公倍数

  学生汇报后问:

  (1)为什么三个部分里都要添上省略号?

  (2)4和6的公倍数还有哪些?有没有最大公倍数?

  (3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

  4的倍数6的倍数

  4,8,

  16,20,

  12,24,

  4和6的公倍数:

五年级下册数学教案2

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的`规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案3

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的'培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案4

  教学内容:

  义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。

  教材分析:

  本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。

  包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。

  学情分析:

  1、学生已有的知识基础。

  在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的`正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。

  2、学生已有的生活经验。

  学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。

  3、学生学习本课内容可能遇到的困难及学习方式的研究。

  学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。

五年级下册数学教案5

  教学目标

  1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

  2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

  3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

  教学内容分析:

  小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

  重难点

  重点:

  知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

  难点:

  运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的`意识。

  教学过程

  活动1【导入】

  一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

  师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

  师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

  师:这段不足1的长度怎样表示呢?(用分数表示)

  在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

  老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

  预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

  预设2:红色纸条对折,不足1的部分是红色纸条的

  预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

  我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

  在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

  活动2【讲授】

  二、分物中体会单位“1”可以是多个物体

  师:刚才我们找到了,生活中其他的地方有没有呢。

  大米

  1000克

  拿出小片子,请你分别表示出它们的。

  我们表示的都是,可是为什么对应的数量却都不相同呢?

  回顾一下找的过程,你对分数又有了哪些新的体会?

  师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

  活动3【讲授】

  三、分物中认识分数单位,深入体会分数的意义。

  师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

  合作建议:

  独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

  小组讨论:在小组内说一说你找到的分数所表示的意义。

  预设:

  观察这两个分数你有什么发现吗?

  相同点:都是把6块糖平均分成6份

  不同点:取的份数不同

  联系:2个是

  师:你会表示吗?

  师:我们发现有几个就是六分之几。

  师:你会表示吗?

  师:那么有几个就是三分之几。

  像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

  师:有些同学还找到了一样的分数,对吗?

  师:表示了这么多分数,谁能来说说分数的意义。

  活动4【导入】

  四、巩固练习

  1、填一填

  2、猜一猜

  师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

  师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

  师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

  师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

  出示

  师:你知道这是几分之几吗?

  有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

五年级下册数学教案6

  教学内容:

  义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。

  教学目标:

  1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。

  2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

  3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的'广泛应用。

  4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

  教学重点:

  培养学生思维的有序性。

  教学难点:

  抽象概括计算规律。

  教学准备:

  计数器,答题纸。

  教学过程:

  一、提出问题:

  师:同学们,数学王国里有十个数字,它们是……

  生:0、1、2、3、4、5、6、7、8、9。

  师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。

  出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?

  师:问题提出来了,敢不敢迎接挑战?

  生:敢!

  师:谁来说说,你是怎么理解“没有重复数字的三位数”的?

  生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。

  师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。

  二、研究问题:

  1、解决问题:

  (学生尝试解决问题)

  师:同学们写完了,哪位同学愿意展示一下你的答案?

  生:(投影仪展示)123,321,213,132,321。

  师:还有其他的写法吗?

  生:(投影仪展示)123,132,213,231,312,321。

  师:两种写法,你认为哪一种更好?

  生:第二种更好。

  师:为什么?(学生茫然)同桌讨论一下。

  生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。

  师:观察第二种写法有重复或遗漏吗?

  生:没有!

  师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。

五年级下册数学教案7

  教学内容:

  人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

  学情分析:

  《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

  教学目标:

  1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

  2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

  3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

  教学重难点:

  重点:最简分数的意义和约分的方法;掌握约分的方法。

  难点:能准确的判断约分的结果是不是最简分数。

  教具、学具准备:

  课件

  教学过程

  复习铺垫。

  课件出示一起回答用列举法找出24和30的公因数和公因数(为24

  /

  30约分做准备)

  1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

  2、填空(说说为什么,什么是分数的基本性质)

  (教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

  过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

  二、探究新知。

  (一)、猜测、验证和比较,理解最简分数的意义

  1、出示例3的教学情境图,让学生观察。

  2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的.对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

  /

  4,生3:75

  /

  100和3

  /

  4是一回事吗?)

  3 、猜一猜:75

  /

  100和3

  /

  4

  /

  是一回事吗?

  4、验证:让学生同桌讨论,把验证过程写在练习本上。

  5、学生汇报结果,教师课件演示。

  6、引导学生比较75

  /

  100和3

  /

  4两个分数的异同,得出最简分数的概念。

  相同点:分数的大小相等

  不同点:75

  /

  100分子和分母较大,含有公因数1、5、25;3

  /

  4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

  总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

  活动:请学生例举最简分数的例子。

  教师说学生判断,

  学生说大家判断

  学生说同桌判断

  抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

  8、课件出示练习:指出下面哪些分数是最简分数?为什么?

  5

  /

  7 6

  /

  9 10

  /

  12 11

  /

  12 8

  /

  10 14

  /

  169

  /

  1624

  /

  25 21

  /

  24 13

  /

  17

  名回答,说明为什么。

  还是抓住关键:分子和分母只含有公因数1

  假如都是2或3或5等的倍数,就不只有公因数1。

  (二)、探究约分的意义和方法

  过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

  课件出示例4.判断24

  /

  30是不是最简分数(不是,除了1外,还有公因数2、3、6)

  把24/30化简成最简分数

  师提出思考问题:

  (1)、化简指什么?使分子分母的数字变小

  (2)、化简后大小不能变,要运用什么性质?等式的基本性质

  (3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

  (4)、化简到什么时候为止?最简分数,分子分母只有公因数1

  学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

  2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

  完成后小组内交流。

  巡视,指导。

  交流探究结果。

  小组汇报结果。

  (1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

  24

  /

  30=24+30

  /

  30+2=12

  /

  152

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  (2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。

  24

  /

  30=24+6

  /

  30+6=4

  /

  5

  /

  小结:教师用课件演示比较两种约分方法,并总结约分的意义。

  约分的概念:

  师:约分还有一种书写方法,请同学们看第85页例4,

  并在练习本上写一写约分的这种写法。

  6、教师课件直观演示约分的另一种书写格式。

  三、巩固练习(课件演示)

  过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

  1、判断下面各等式,哪些是约分?为什么?

  2、错题改正。

  3、指出下列分数分子和分母的公因数。

  4、分苹果。

  四、课堂小结

  这节课我们学习了什么内容?(板书课题:约分)

  五、板书设计

  约分

  方法一:

  24

  /

  30=24÷2

  /

  30÷2=12

  /

  15

  12

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  方法二:

  24

  /

  30=24÷6

  /

  30÷6=4

  /

  5

  75

  /

  100= 3

  /

  4

  不同点:分子和分母较大分子和分母较小,

  含有公因数1、5、25只含有公因数1

  最简分数

  教学反思

  1、为学生的数学思考搭梯子。

  课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

  如:在探究理解最简分数意义这一环节的教学中,学生验证出75

  /

  100和3

  /

  4相等以后,我提出了一个问题:75

  /

  100和3

  /

  4有什么区别?很多学生都能看出75

  /

  100分子分母较大,3

  /

  4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

  /

  100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

  又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

  /

  30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

  2、为学生交流搭台子。

  课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

  3、不动笔墨不读书。

  数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

  4、教学环节过渡亦无痕。

  好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

  5、思想方法渗透亦无形。

  数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

  欠缺火候的地方:

  有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

  名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

五年级下册数学教案8

  一、学情分析:

  《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。

  二、教学目标:

  1、理解质数和合数的概念。

  2、能熟练判断质数与合数,能够找出100以内的质数。

  3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  三、教学重难点:

  重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  难点:能运用一定的方法,从不同的角度判断、感悟质数合数。

  四、教学过程:

  (一)导入新课。找出1~20各数的因数。

  你发现了什么?

  (学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)

  今天我们学习的内容就与一个数因数的个数有关。

  [设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]

  (二)新授

  探究一:认识质数和合数

  师:请同学们按照因数的个数,将这些数分分类。

  (学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)

  师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。

  师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?

  (学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)

  师:1是质数吗?

  (学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)

  师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?

  (学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)

  师:1是合数吗?

  (学生可能回答:1不是合数,它只有1个因数1。)

  小结:1不是质数,也不是合数。

  师:你还能找出其他的质数和合数吗?

  (学生举例并说明理由)

  [设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]

  探究二:找出100以内的`质数,做一个质数表。(课本P14例1。)

  (媒体出示图表)

  师:你有什么好方法?

  (学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)

  师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?

  (学生可能回答:50的倍数,51的2倍是102,超过100了。)

  (学生制作100以内的质数表。)

  [设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]

  五、练习

  (课本P16∕练习四第一、二题。)

  六、小结:

  1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

  2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。

  3、1不是质数,也不是合数。

五年级下册数学教案9

  教案设计

  设计说明

  1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

  学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

  2.在学生原有的认知水平上促进发展。

  本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

  课前准备

  教师准备 PPT课件

  学生准备 两张完全一样的方格纸

  教学过程

  ⊙创设情境,导入新课

  师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

  (课件出示情境图)

  师:“分数王国”里有哪些数呢?“小数王国”里呢?

  (生汇报)

  师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

  生:和0.06都说自己更大。

  师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

  设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

  ⊙自主探索,学习新知

  1.解决问题。

  (1)课件出示教材7页情境图。

  师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

  (2)大胆猜测,探究比较方法。

  方法一 把分数化成小数来比较。

  =1÷20=0.05,因为0.060.05,所以0.06。

  方法二 把小数化成分数来比较。

  0.06=,=,因为,所以0.06。

  课件展示学生没有想到的画图法,让学生在讨论中理解。

  0.06>

  师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

  2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

  (1)认真读题,明确题目中的`“翻译”指什么。

  (2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

  (3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

  3.归纳分数化成小数的方法。

  (1)探究将分数化成小数的方法。

  把下列分数化成小数:

  练习,并思考转化方法。

  (2)小组内交流方法。

  (3)班内反馈。

  要求学生说出转化方法,并讲明转化的原理。

  师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

  4.归纳“小数化成分数”的方法。

  把0.3,0.27,0.75,0.125化成分数。

  练习,探究小数化成分数的方法。

  师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

  设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案10

  教学目标

  1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3.进一步提高学生的统计技能,增强学生的统计意识。

  教学重难点

  教学重点:认识众数,理解众数的意义及作用。

  教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

  教学过程

  (一)复习旧知

  1、回忆平均数及中位数的求法,指生回答。

  2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

  (二)完成例1

  1.出示例题:

  五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

  1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

  师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

  2.学生小组合作选择10名队员。

  3.根据学生汇报,师课件随机演示选择结果。

  平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

  +1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

  +1.52+1.52+1.52+1.52)÷20

  =29.5÷20

  =1.475

  中位数=(1.48+1.49)÷2

  =2.97÷2

  =1.485

  接近1.485m的同学人数太少,不适合大多数同学的

  身高。最高的与最矮的相差6cm。

  这组数据的中位数是1.485,身高接近1.485m的比较合适。

  身高是1.52m的人最多,1.52m左右的比较合适。最高的'与最矮的相差3cm。

  1 . 52出现的次数最多,最能应这组同学的身高情况.

  4.小结:以众数1.52为标准选择队员身高会比较均匀。

  师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

  5.师生共同归纳众数概念。

  师揭示众数的概念

  一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

  6、做一做,

  7、小练习:

  学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

  求这次英语百词听写竞赛中学生得分的众数.

  三个数据存在的数量和意义:

  比较三个统计量:

  (三)学习众数的特征

  师出示练习题:

  1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

  19 23 26 29 28 32 34 35 41 33 31

  25 27 31 36 37 24 31 29 26 30

  (1)这组数据的中位数和众数各是多少?

  (2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

  2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

  甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

  乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

  (1)甲、乙成绩的平均数、众数分别是多少?

  (2)你认为谁去参加比赛更合适?为什么?

  生先独立思考,再全班交流。

  师:在找三组数据的众数的过程中,你发现了什么?

  生:在一组数据中,众数可能不止一个,也可能没有众数。

  师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

  2、三个数据存在的数量和意义

  (四)综合练习

  你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

  (五)联系情境,应用众数

  销售衣服问题。

  师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

  师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

  生:讨论交流,发表自己想法。

  师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

  (五)拓展延伸(“生活中的数学”)均码问题。

  师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

  师:课后请同学们调查和了解一下:什么是“均码”?

  (六)全课小结

  教师:同学们,今天我们上了这节课你收获了什么?

五年级下册数学教案11

  【教学目标】

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  【重点难点】

  理解并掌握3的倍数的特征。

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=12 3×5=15 3×6=18

  3×7=21 3×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→51 18→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的.数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  210 54 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  3402 5003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  14 35 45 100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案12

  课题:简单的土石方计算

  教学目标:

  1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

  2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

  3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

  教学重点:

  熟练运用长方体和正方体的体积计算公式解决实际问题。

  教学难点:

  长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

  教学过程:

  一、巧设情境,激趣引思。

  同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

  (1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

  (2)怎样求长方体的'体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

  (3)学生分组讨论,指名回答问题。

  这节课我们运用体积的有关知识,解决实际生活中的问题

  二、自主互动,探究新知。

  课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

  教师介绍“方”,让学生用方描述挖出的土。

  课件出示例题及拦河坝的和示意图。

  让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

  怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

  让学生尝试解决问题,并交流计算的方法和结果。

  三、应用拓展,反思交流。

  1、应用:

  (1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

  (2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

  第3、4题,让学生先说一说,要解决问题,先要求出什么?

  2、拓展:

  练一练5 板书设计:

  简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

  横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案13

  信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

  1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

  2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

  3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

  一、引入:

  1、出示:条形统计图

  (1)某电影院上月各类影片观众人数统计图

  (2)新芽书苑20xx年3月第一星期故事书销售情况统计图

  2、提问:你已知道了条形统计图的哪些知识?

  3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

  (1) 上虞电影院20xx年(1~6)月观众人数统计图。

  (2) 百官镇一农户96~20xx年人均收入统计图。

  二、展开:

  (一)折线统计图的.特点和作用。

  1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

  (1) 学生自由讨论交流。

  (2) 这两类统计图最大的区别是什么?

  2、结合条形统计图的特点,归纳折线统计图的特点。

  3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

  4、结合课本进一步深入了解折线统计图的特点和作用。

  (二)折线统计图的绘制。

  1、你认为哪幅条形统计图用折线统计图来绘制更合适?

  2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

  A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

  3、学生尝试绘制。

  (1) 出示“我们的调查资料”。

  (2) 想一想,哪几组数据用折线统计图绘制比较合适?

  (3) 请选择其中一组数据绘制。

  (4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

  (5)大组交流绘制情况,并纠错。

  三、应用

  1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

  2、出示:百官镇一农户96~20xx年人均收入统计图。

  思考:A、看图后你有什么感受?

  B、你能提出哪些数学问题?

  3、对比练习:

  (1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

  思考:A、两种鞋的销售趋势分别怎样?

  B、你有什么建议?

  (3) 出示:两家游泳衣专卖店的销售情况统计图。

  思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

  B、猜猜为什么乐乐专卖店会有这样的销售现象

  四、总结

  你又有什么新收获?你是用什么方法学会的?

  五、课外作业

  省略

五年级下册数学教案14

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

   (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的'计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

五年级下册数学教案15

  【教学目标】

  1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2、知道100以内的质数,熟悉20以内的质数。

  3、培养学生自主探索、独立思考、合作交流的能力。

  4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【重点难点】

  质数、合数的意义。

  教学过程:

  【复习导入】

  1、什么叫因数?

  2、自然数分几类? (奇数和偶数)

  教师:自然数还有一种新的.分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  【新课讲授】

  1、学习质数、合数的概念。

  (1)写出1 ~20各数的因数。(学生动手完成)

  点四位学生上黑板写,教师注意指导。

  (2)根据写出的因数的个数进行分类。

  (3)教学质数和合数概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

  如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

  2、教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3、出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。

  ③注意1既不是质数,也不是合数。

【五年级下册数学教案】相关文章:

五年级下册数学教案11-09

五年级下册数学教案【热】02-02

人教版五年级下册数学教案02-10

五年级下册数学教案【荐】01-24

【热】五年级下册数学教案01-25

【热门】五年级下册数学教案01-24

【精】五年级下册数学教案01-24

【推荐】五年级下册数学教案01-24

五年级下册数学教案【精】01-25