六年级数学教案

时间:2024-07-18 15:47:23 教案 我要投稿

六年级数学教案(集合15篇)

  作为一名教职工,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?以下是小编为大家整理的六年级数学教案,希望对大家有所帮助。

六年级数学教案(集合15篇)

六年级数学教案1

  教学目标

  1.进一步理解采用法定计量单位的重要意义.

  2.复习长度、面积、体积、质量、时间单位.

  3.复习各种计量单位间的进率.

  教学重点

  指导同学汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

  教学难点

  掌握各种计量单位的实际大小及进率,正确使用计量单位.

  教学步骤

  一、直接导入.

  提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(同学自由回答)

  教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习量的计量.(教师板书课题)

  二、归纳整理.

  (一)启发同学回忆:我们学过了哪些量的计量?

  教师板书:

  长度 质量 时间

  面积

  体积(容积)

  (二)复习长度、面积、体积单位及进率.

  1.启发同学回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

  2.启发同学回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间

  的进率是多少?

  同学讨论:相邻面积单位之间的进率为什么都是100?

  师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.

  3.启发同学回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

  同学思考:相邻体积单位之间的进率为什么是1000?

  教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的'进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

  4.练习.

  (1)在( )里填上适当的计量单位名称.

  一枝铅笔长176( ) 一个篮球场占地420( )

  一张课桌宽52( ) 一个火柴盒的体积是21( )

  一间教师的面积是48( ) 一种保温瓶的容量是2( )

  (2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

  (3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

  (三)复习质量单位.

  1.启发同学回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)

  2.练习.

  ①10麻袋大米约1( )

  ②l个鸡蛋约6.5( )

  ③1棵白菜约2.5( )

  ④1名六年级同学体重是40( )

六年级数学教案2

  【教材分析】

  正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

  【学情分析】

  学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

  【设计理念】

  数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

  1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

  2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

  3.注重积累数学学习经验,渗透数学思想方法。

  4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

  【教学目标】

  1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

  3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

  【教学重点】

  理解正比例的意义。

  【教学难点】

  掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  【教学准备】

  教学课件。

  【教学过程】

  一、激趣设疑,铺垫衔接。

  1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

  2.结合现实情境回忆常见的数量关系。

  【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

  二、合作探究,发现规律。

  1.教学例1

  出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

  谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

  组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

  谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

  预设:

  (1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

  (2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

  根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

  提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

  根据学生的回答,板书:

  提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

  请学生完整地说一说表中的.路程和时间成什么关系。

  【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

  2.教学“试一试”。

  让学生自主读题,根据表中已经给出的数据把表格填写完整。

  谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

  提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

  根据学生的回答,板书:

  让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

  【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

  3.抽象概括

  请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

  启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

  根据学生的回答,板书:,并揭示课题。

  请大家想一想,生活中还有哪些成正比例的量?

  【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

  三、分层练习,丰富体验

  1.“练一练”第1题。

  出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

  讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

  学生按要求活动,并组织反馈。

  提问:张师傅生产零件的数量和时间成正比例吗?为什么?

  2.“练一练”第2题。

  出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

  3.练习十第1题。

  先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

  4.练习十第2题。

  出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

  出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

  结合学生的回答小结。

  追问:判断两种相关联的量是否成正比例关系,关键看什么?

  【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

  四、反思回顾,提升认识

  谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

  【板书设计】

  正比例的意义

  两种相关联的量

六年级数学教案3

  学材分析

  对于一些组合图形的面积和周长的计算学生容易出错。

  学情分析

  还需加强概念的教学,从而提高上课效率。

  学习目标

  进一步巩固已学的知识,了解学生掌握知识的情况,便于查漏补缺。

  导学策略

  导练法、迁移法、例证法

  教学准备

  投影仪、自制投影片、

  教师活动

  学生活动

  1、测试

  2、评析

  3、总结

  考试

  听老师讲解题目。

  教学反思

  学生的`概念不是理解的很透和解题习惯不好是失分的重要原因。

  百分数的应用

  一、单元教学的目标

  1、在具体情境中理解增加百分之几或减少百分之几的意、义,加深对百分数意义的理解。

  2、能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。

  二、教学内容:百分数的应用、运用方程解决简单的百分数问题。

  三、教学重点:能运用所学知识解决有关百分数的实际问题。

  四、教学难点:运用方程解决简单的百分数问题。

六年级数学教案4

  本册教学目标

  一板书设计:

  二教后反思:

  (1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的.几分之几?”就是求3个 是多少?(列式: ×3 = )

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示 ×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  三、作业

  练习二第1、2、4题。个人修改

六年级数学教案5

  学习内容:“分梨”的问题

  学习目标:

  1.调动学生学习数学的兴趣和积极性。

  2.尝试学会用逆推的策略解决问题。

  3.在小组合作交流的过程中,学会发现、欣赏并学习同伴身上的优点。

  4.提高加减乘除的口算能力。

  学习重点:用逆推思维解决问题。

  学习难点:用逆推思维解决问题。

  学习过程:

  1.老师考勤学生,点名。

  2.认识新同学,每个同学进行1分钟介绍自己。

  3.学生自由组合选择座位。

  4.讲解解决“分梨”的问题:一只篮子中有若干梨,取它的一半又一个给第一个人;再取其余一半又一个给第二人;又取最后所余的一半又三个给第三个人.那么篮内的梨就没有剩余,篮中原有梨多少个?

  ⑴先让学生独立思考

  ⑵小组内交流

  ⑶反馈交流,老师引导启发思维。

  ⑷小结策略:逆推的解题策略就是从结果倒着推回去,在逆推过程中总数是不变的,我们要能找出关键条件,即最后得到的数量入手分析。

  5.学生尝试独立解决对应例题的反馈练习:一只篮子里有若干梨,取他的一半零一个给第一个人;再取余下梨的一半零一个给第二个人;最后只剩下2个梨。问篮子里原来有多少个梨?最后集体交流反馈。

  6.进行扑克牌“24点”小游戏。

  学习内容:“水桶和油桶”的问题

  学习目标:

  1.让学生增加对数学的兴趣,认识数学的多种形式。

  2.另外教授一些数学计算的'巧妙方法。

  3.引导学生通过思考操作发现并验证“水桶和油桶”问题的特征,培养学生大胆猜测、勇于探究的求索精神。

  4.利用简便方法,提高学生计算效率,更加高效的学习数学。

  学习形式:学生自主探索、合作交流

  学习过程

  一、引入

  师:提出问题:你能解决这样的问题吗?展台出示题目。

  二、探究新知

  1.请同学们取出1号靶,认真观察(引导学生观察)

  2.小组交流,探究解决。

  3.请同学们取出2号靶,尝试解决。(引导学生动手实践)如果有的学生做出来,让孩子展示,教师给予赞赏;如果学生做不出来,充分调动组内力量,探究解决。

  4.请同学们按照组内交流出的方法各自解决。(小组合作,互相帮助)

  三、课堂拓展

  同学们通过今天这节课的学习,是不是觉得数学充满了奥秘呢?课后,有兴趣的同学可以在网络上找很多有关“水桶和油桶”的知识,然后和老师、同学们一起去研究研究,好吗?

  今后老师会继续为你们介绍一些更有趣的数学现象,这些数学方法更贴近你们平时的数学学习,有助于你们更好地学习数学。

六年级数学教案6

  课题:分数乘分数

  教学内容:教材第10页例3,第11页例4以及做一做,练习二中的3、4题

  教学目标:

  1、理解一个数乘分数就是求一个数的几分之几是多少。

  2、掌握分数乘分数的计算方法,并能正确地进行计算。

  重难点、关键: 1、重难点:分数乘分数的计算方法。

  2、 关键:理解一个数乘分数就是求一个数的几分之几是多少。

  教学准备:实物投影或者电脑课件。

  教学过程:

  一、旧知铺垫

  1、计算下面各题。

  12 32 15 12

  2、说一说,分数乘法的计算方法、步骤。

  (1) 整数与分子相乘的乘积作分子,分母不变。

  (2) 能约分的要先约分,再计算

  3、根据题意列出算式。

  (1) 一袋大米,每天用去千克,3天用去多少千克?

  (2) 某修路队,每天修路千米,5天修多少千米?

  (3) 一辆汽车,每小时行驶全程的,4小时行驶全程的几分之几?

  二、探索新知

  1、教学例3。

  出示题目:

  问题一:小时粉刷这面墙的几分之几?

  (1) 你想怎样列式?

  学生回答,教师板书。

  (2)分数乘分数怎样计算?

  ①表示什么?

  经过讨论,使学生理解,就是求的是多少,也就是说把平均分成4份,取其中一份是多少?

  ③ 画示意图分析。

  每小时粉刷 这面墙的

  这面墙的 的

  ③从图上可以看出,这面墙的的,是占整面墙的

  板书:

  ④ 发现分数乘分数的计算方法。

  ⑤ 引导学生观察算式和结果,看一看其中的联系。

  板书:

  想一想:虚线框中,应该是怎样的`一个计算过程呢?

  学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

  然后,联系以上的算式,让学生说一说计算方法。

  学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

  问题二:小时粉刷多少呢?

  (1)引导学生列出算式

  (2) 你认为计算结果是多少?

  学生回答,教师板书

  (3) 画示意图加以验证。

  注意:画示意图时,要紧密结合的意义加以分析。

  (4)总结分数乘分数的计算方法。

  师生共同总结,教师板书:

  分数乘分数,应该分子乘分子,分母乘分母。

  3、 教学例4

  4、 出示教材例题,学生简要了解蜂鸟。

  (1)分钟能飞行多少千米?

  ①列出算式

  ②学生尝试计算,教师巡视课堂了解学生计算情况。

  完成后,选择两位不同计算过程的学生上台板演。

  ③强调:能约分的要先约分,再计算。

  (2)5分钟能飞行多少千米?

  ① 学生独立列式解答,请一位学生上台板演。

  ② 教师出示算式,学生判断可以不可以。

  ③ 说明分数和整数相乘时约分的方法。

  强调:整数约分后的结果要写在整数的上面,并与分子相乘。

  三、巩固练习

  1、完成例题后做一做

  2、完成练习二第3、4题

  四、课后作业设计

  一、计算

  4 10 14 15

  二、列式计算。

  1、的是多少?

  2、千克的是多少?

  3、小时的是多少?

  三、解答下列问题。

  1、高山村农民开荒,每小时开垦荒地公顷,小时能开垦荒地多少公顷?

  2、一个长方形长dm,宽dm,它的面积是多少dm2?

六年级数学教案7

  一、教学内容

  解决问题的练习课。(教材第44~45页练习九第3、4、7、8题)

  二、教学目标

  1.复习“已知两个数的和(差)及这两个数的倍数关系,求这两个数”“分数除法在工程问题中的应用”两类分数除法应用题,使学生熟练掌握这两类问题的解决方法。

  2.提高学生解决实际问题的能力。

  三、重点难点

  重难点:熟练掌握这两类分数除法应用题的解题思路和方法。

  四、教学过程

  一、基础练习

  只列式,不计算。(课件出示题目)

  (1)一条公路全长900 m,已修的米数是剩下的1/2。已修的、剩下的各有多少米?

  (2)修一条公路,甲队单独修要4天,乙队单独修要5天。两队合作,需要修多少天?

  点名学生回答,并说一说分别属于什么类型的应用题。

  二、指导练习

  (一)已知两个数的和(差)及这两个数的倍数关系,求这两个数

  1.教学教材第44页练习九第3题。

  (1)学生读题,理解题意,明确应用题类型。

  (2)师:解决这类题有哪些方法?

  引导学生回顾用方程法和算术法解决。

  (3)引导学生分析题中的数量关系。

  (4)学生独立列式计算,点名学生板演,集体订正。

  (5)师生共同归纳方法。

  2.教学教材第44页练习九第4题。

  学生独立完成,两人一组相互订正,最后集体订正。

  (二)分数除法在工程问题中的应用

  1.教学教材第45页练习九第7题。

  (1)学生读题,理解题意。

  (2)师:这是什么类型的问题?

  引导学生说出是行程问题中的`相遇问题。

  师:这类问题有什么数量关系?

  引导学生说出总路程÷速度和=相遇时间。(板书数量关系)

  师:总路程知道吗?

  引导学生发现也可设全程为单位“1”来解决问题。

  (3)学生独立列式计算。

  (4)点名学生回答,根据回答,板书:

  1÷1/2+1/3

  =1÷5/6

  =6/5(时)

  (5)教师小结:类似这样的行程问题也可按照解决工程问题的方法求解。

  2.教学教材第45页练习九第8题。

  点名学生板演,其余学生独立完成,最后集体订正。

  三、巩固练习

  1.完成教材第45页“练习九”第5题。(学生独立完成,教师订正)

  解:设白昼是x小时,则黑夜是3/5x小时。

  x+3/5x=24 x=15

  3/5×15=9(时)

  2.教学教材第45页“练习九”第9题。(学生独立完成,两人一组相互订正)

  1÷1/8+1/10=40/9(天)

  40/9<5,5天能种完。

  3.一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的4/5?(课件出示题目)

  4/5÷1/10+1/15=24/5(天)

  四、课堂小结

  你有哪些收获?还有什么不明白的地方?

  板书设计

  练习课

  第7题:总路程÷速度和=相遇时间

  1÷1/2+1/3

  =1÷5/6

  =6/5(时)

  教学反思

  1.发挥学生的主观能动性。

  练习过程中,尽量放手让学生去想、去做、去评。若有疑问,则与同桌或在小组内自由讨论交流,最后集体订正。

  2.重视学生的情感体验。

  学生在思考、交流的过程时,一直处于问题的解决过程中。在这个过程中,教师应让学生不断积极主动地表现自我,也鼓励学习较弱的学生勇于提出问题,同时用积极的言语对他们的思路给予肯定,使学生有很好的情感体验。

六年级数学教案8

  教学内容

  教科书第70~72页例1,第72页课堂活动及练习十六。

  教学目标

  1.进一步了解统计表和三种统计图的特点,并能根据实际需要选择合适的统计图来表示数据和反映情况,能利用统计图的特征获取有用的信息。

  2.体会数据对决策的作用,体会统计在现实生活中的价值。

  教学重点

  根据实际需要选择合适的统计图来表示数据,并能利用统计图的特征获取有用的信息。

  教学难点

  根据实际需要选择合适的统计图来表示数据。

  教学准备

  教具:多媒体课件。

  学具:计算器。

  教学过程

  一、联系实际,引入新课

  教师:同学们,我们在学校已经学习了6年时间,同6年前刚进校时相比我们自己有哪些变化?

  学生自由发表见解,教师进行适时引导。

  教师:是啊,随着年龄的增长我们获得了更多的知识,同时我们的身体也在发生着变化,今天我们就利用已经学过的统计知识来展示我们的身高变化吧!

  板书课题:综合统计活动

  二、自主探索,学习新知

  1.教学例1

  (1)汇总搜集的资料,填写统计表。

  教师:我们课前已经从医务室的档案里查到了自己这6年来的身高数据,现在我们以小组为单位互相交换自己的身高资料,一起填写书71页的统计表(一)。比一比哪组同学协作得最好,完成得更快。

  学生合作完成,教师巡视并指导速度比较慢的小组合理进行分工合作。

  教师小结:在刚才的合作中,有的小组团队协作意识很强,而且有比较明确的分工,两个同学为一个单位,本单位填好后立即与另一组的两个同学互换资料。这样既合理地安排了时间,同时又避免了合作中的混乱。

  (2)完成每组中平均数的计算。

  教师:现在我们再次以小组为单位,借助我们手中的计算器,计算出组内同学在每个年级时的平均身高。想一想我们该怎样合理地安排人员,才能更快更准确地计算出平均身高?

  引导:两人一组,同时计算同一个年级的平均身高,以确保数据的准确性。

  (3)汇总全班同学的身高并计算出平均数。

  教师引导:在刚才的合作中,我们进行了有效合理的安排--谁与谁同时计算一、二年级,谁与谁同时计算三、四年级这样既节约时间,又保证了数据的准确性。现在我们想要汇总全班同学的身高并分别计算出同学们在每个年级时的平均身高,大家想想又应该怎样合理地安排呢?如何有效利用其他小组整理的结果呢?

  让同学各抒己见,教师梳理出合理的方案。

  教师:正像同学们所想的那样。我们首先要计算出自己小组同学在各年级的'身高总数,然后指定各年级的平均身高计算,我们就指派各对应小组成员同时计算。

  指派计算各个年级的平均身高计算的小组,每个小组依次汇报本组各年级的身高总数。

  汇报计算的结果完成教科书71页统计表(二)。

  (4)制作统计图。

  教师:根据同学们在各个年级时的平均身高制作成统计图。三种统计图你会怎么选?(强调为什么不会选择扇形统计图,从而突出扇形统计图的特征--反映部分属于总数之间的关系)

  教师引导:实际上关于平均身高的统计图我们既可以选择条形统计图又可以选择折线统计图,因为它们都能直观看出数量的多少。两种统计图有什么区别呢?(强调折线统计图突出的特点是还能看出数量的增减变化情况。)

  (5)看图和看表分析

  教师:观察这幅图你能获得哪些信息?

  学生各抒己见,教师引导学生重点观察平均身高每一年各是多少,平均身高在发生怎样的改变?

  教师:6年来全班同学的平均身高增加了多少?

  教师:观察统计图你能否发现小学身高增长的关键期是什么时候?此时你会给学校伙食团长以及家长提出什么建议?

  学生各抒己见,教师引导学生注重锻炼和营养搭配。

  (6)然后解决教科书72页第(4)题的第②个问题。

  教师:如何才能知道现在班上有多少个同学的身高不低于全班的平均身高?(回顾最简单的数据收集方法--点数)算一算占全班人数的百分之几?

  2.课堂总结

  教师:今天我们学习了什么?(综合统计活动)你有什么收获?

  三、课堂活动

  教师:如果我们想把全班同学按现在的身高分成5组,你们会怎么分?每组的统计结果又怎样表示?

  学生充分发表自己的看法,教师小结:可以按从最低到最高的身高分出相等的5段,然后统计出每段中的人数。

  根据学生的想法完成第三个统计表。

  身高(cm)()~() ()~() ()~( )()~() ()~()

  人数(人)

  教师:对于这一个身高资料你认为还可以选择哪种统计图进行整理和分析?(根据学生的回答在word中自动生成扇形统计图,并进行分析)

  四、拓展应用,促进发展

  完成练习十六第1题。

六年级数学教案9

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第2~3页。

  【教学目标】

  1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用数对确定位置。

  2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

  3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用数对确定位置。

  【教学过程】

  一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置

  1.谈话引入。

  今天有这么多老师和我们一起上课,同学们欢迎吗?

  老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?

  2.合作交流,在已有经验的基础上探究新知。

  (1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

  汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排

  哪个小组也用语言描述出了班长的位置?

  请班长起立,他们的描述准确吗?

  刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排)

  看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

  板书:列行

  老师左手起第一组就是第一列,横排就是第一行

  班长的位置在第4列、第3行。

  还有其他的表示方法吗?

  画图的方法:

  如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)

  把座位图转过来,班长的位置变了吗?为什么?

  (没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)

  (2)探究新知。

  在这张座位图中,你能找到自己的位置吗?

  师指图:这是谁的位置?(我的,我的位置在第五列,第4个)

  指名描述自己的位置?

  同桌说说自己的位置。

  今天老师还要教你们一种更为简洁的方法来确定位置,想知道吗?

  板书:(2,5)

  你们知道,这是谁的位置吗?

  2,5分别表示什么意思?像这样用两个数来表示位置,我们称它们为数对。(板书)

  下面我们就来研究用数对的方法来确定位置。(板书)

  (3)巩固新知。

  A、谁能用数对表示出自己的位置?指名两个,说出数对的含义,板书出来。

  老师板书:(5,2),请这个同学起立,回答问题:(2,5)(5,2)这两个数对都由数字2、5组成,他们表示的位置一样吗?为什么

  (两个数字组成顺序不一样,表示的意思就不一样)

  B、老师出示图中的点,相应的学生说数对,其他同学判断对错。

  (1,5)(4,2)(3,3)

  当出示(3,3)时,问:两个3的意思一样吗?

  在我们班的位置中,这样的数对还有吗?

  如果有个班级最后一个同学的位置是(7,7),你知道这个班有多少人吗?为什么?

  (49个,因为表示有7列,7行,所以77=49人)

  C、小游戏:接龙。

  老师先说出一组数对,相应的同学起立,说出下一个同学的位置,以此类推。

  先让学生在心中想好你想叫得同学的位置。

  D、寻找新位置。

  同学们都会用数对表示自己的位置了吗?下面这个环节要检验你们每一个同学是否真的会了。

  收拾好你的东西,根据你手中的`数对,快速找到你的新位置。

  (学生的数对里有两个特殊设计:(3,

  )和(,3)

  二、通过多种练习,使学生会在方格纸上用数对确定位置

  1.出示动物园示意图。

  你能看懂这张图吗?图上的数字表示什么意思?

  请你用数对说出飞禽馆和南门的位置。

  请你写出狮虎山,猴山,大象馆的位置。

  观察这三个地点在图中的位置和他们的数对,你有什么发现?

  周六,小红和妈妈去动物园玩,她们的游玩路线如下

  请你说出她们的参观路线。

  请你设计一条路线:

  (1)从南门进,从北门出。(2)经过所有的景点。(3)不走重复路线。

  用数对写出路线方案。

  2.老师的礼物。

  老师相送给每位同学一份礼物,但是只有掌握了今天所学的知识的同学才能看到这份礼物。

  学生按照数对涂色。

  介绍经验:这么多数对,你是怎么做到不丢不重,又准确的找到位置的。

  看来这些同学取得成功时有方法的,老师真心祝贺你们,没有成功的同学也别气馁,老师把信心送给你们,只要吸取好的经验,下次一定会成功。

  思考:在这幅图中,数对确定位置的方法和之前有什么相同和不同?

  (方法一样,一组数对表示一个方格,而不是一个点)

  3.第5页第4题第(2)小题:描出下列各点并按字母顺序依次连成封闭图形,看看是什么图形。

  这道题的构图方式和刚才的心行构图有什么不同?

  三、生活中的数学

  用数对确定位置,在生活中应用广泛,你能举出例子吗?

  教师出示:地图、围棋图

  四、小结

  五、小小设计师

  以小组为单位,任选构图方式,用数对确定位置,设计一个图案。把设计方案和效果图都记录在图表纸上。

六年级数学教案10

  难点名称:理解“满100减50”与“五折”的区别

  难点分析:

  从知识角度分析为什么难。

  打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

  从学生角度分析为什么难。

  学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

  难点教学方法:

  在教学时,先让学生结合自己的.生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

  教学过程:

  一、复习旧知,引入新课。

  1、提问“一件物品打九折出售”表示什么意思?

  2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

  3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)

  二、教学新知。

  (一)出示例5:某品牌的裙子搞促销活动,在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

  1、根据这些信息,学生提问题。

  教师板书:

  (1)在A、B两个商场买,各应付多少钱?

  (2)哪个商场省钱?

  2、分析问题,理解题意。

  (1)结合题目给出的数学信息,哪些是关键的?

  (2)怎样理解“满100元减50元”?

  (3)不足100元的部分呢?怎么办?

  3、独立思考,尝试解决。

  师:请同学们独立思考,看能否解决黑板上的这两个问题?

  4、交流并汇报方法。

  师:谁来说说自己的解决方法?

  学生展示自己的算式,并解释。

  5、启发思考,辨析原因。

  (1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

  (2)什么情況下两种优惠是一样的呢?

  6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

  (1)“满100减50”,就是够100才能减50,不够则不减。

  (2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

  (3)售价刚好是整百元的时候,两种优惠结果才是一样的。

  三、练习巩固,提高能力。

  1、做一做。

  某品牌的旅游鞋搞促销活动,在A商场“每满100元减40元”的方式销售,在B商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

  (1)在A、B两个商场买,各应付多少钱?

  (2)选择哪个商场更省钱?

  小结:

  同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

六年级数学教案11

  【教学内容】

  北师大版小学数学六年级(上册)第四单元第51~53页化简比。

  【教学目标】

  1)在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  【教学重点】

  会运用商不变的性质或分数的基本性质化简比。

  【教学难点】

  能解决一些简单的实际问题。

  【教具准备】

  蜂蜜、水、量筒、水杯和自制课件

  【教学设计】

  教学过程

  教学过程说明

  一. 制蜂蜜水的活动:哪一杯更甜?

  同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。

  各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。

  [课件出示]课本P51图片,同时配上画外音:

  一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。

  一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。

  师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。

  我们先分别写出它们的比。

  40:360

  10:90

  就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。

  40:360===1:9

  10:90===1:9

  得出结论:两杯水一样甜。

  二.化简比。

  分数可以约分,比也可以化简。

  0.7:0.8:

  师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。

  0.7:0.8:

  =0.70.8=

  =78=4

  =7:8=

  =8:5

  完成书上试一试化简下面各比。

  15:210.12:0.4:1:

  请学生独立完成后,说说化简比的方法,全班集体订正。

  三.课堂练习。

  [课件出示]课本P52第1题:连一连

  在学生中开展比赛,鼓励学生独立完成。

  [课件出示]课本P52第2题:写出各杯子中糖与水的质量比。

  1)写出四个杯子中糖和水的质量比。

  2)这几杯糖水有一样甜的吗?

  3)还能写出糖与糖水的质量比吗?

  [课件出示]课本P52第3题:

  (1)(2)题自己独立完成;

  (3)题投球命中率同学讨论完成。

  四、总结

  师:同学们一起来总结本节课学习的内容:

  阅读数学课本P51比的化简。

  我们是根据什么来化简比的呢?

  是根据比与除法、分数之间的关系,利用商不变的性质或分数的'基本性质来化简的。

  我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题

  四、独立完成课本P53第4题和第5题。

  五、扩展练习

  1、大小圆的半径分别是7厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?

  2、杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?

  让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。

  体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。

  这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。

  进一步巩固化简比的方法。

  巩固化简比。

  这几杯糖水有一样甜的吗?这个问题需要化简比或求出比值后才能确定

  投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。

  这个实践活动不仅仅能巩固学生对比的认识,提高学生的测量技能,还可以鼓励学生从中发现身高与影长的关系,了解一些天文知识。学生通过亲自测量实践,可以发现:在同一时刻,不同人的身高与影长的比可以看成是一样的;在不同时刻,由于太阳照射点的变化,一个人身高和影长的比一般是不一样的。测量时由于误差可能影响发现,教师要向学生解释说明。这一活动也为以后学习正比例积累了经验。

  【教学反思】

  在实际情境中,体会了化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。但还有少数同学对求比值和化简比混淆不清;

六年级数学教案12

  教学内容:

  P702– 75

  教学目标:

  1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

  2、培养学生仔细审题,认真思考,探索规律的良好习惯。

  教学重难点:

  理解正比例的意义和性质。

  教学过程:

  一、复习引入:

  我们已学了一些常见的数量关系,谁能来说一说:

  1、路程、速度、时间;

  2、单价、数量、总量;

  3、工作效率、工作时间、工作总量;

  ……

  二、先观察、后概括:

  1、例1:一列火车行驶的时间和路如下表:

  时间(小时)

  1

  2

  3

  4

  5

  6

  ……

  路程(千米)

  60

  120

  180

  240

  300

  360

  ……

  观察上表,回答下列问题:

  ⑴、表中有哪两个量是相关联的?

  ⑵、路程是怎样随着行车时间的变化而变化的?

  ⑶、相对应的路程和时间的比分别是多少?比值是多少?

  从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。

  写成关系式是:=速度(一定)

  2、新改例2:一种铅笔,支数与总价如下表:

  支数)

  1

  2

  3

  4

  5

  6

  ……

  总价(元)

  0.3

  0.6

  0.9

  1.2

  1.5

  1.8

  ……

  由上表可以发现什么特征?

  (哪几个量是相关联的?这两个相关联的量之间有什么关系?)

  写成关系式是:=单价(一定)

  比较例1、例2,它们有什么共同点?

  概括:

  ⑴、两种相关联的.量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

  ⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

  = K(一定)

  (结合例1、例2说一说)

  3、练一练P75

  三、巩固练习:

  1、 P76看后判断,并连起来说一说。

  2、 P76 – 2先观察,再分析。

  3、 P76 – 3

  四、小结:

  要判断两个量是否成正比例,依据什么来判断?

  1、两个相联的量?

  2、一个量随着另一个量的变化而变化,并且它们的比值一定。

  五、作业:

  P76 3 4

六年级数学教案13

  【教材分析】

  这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的'几分之几是多少的实际问题的解答方法。

  【学情分析】

  学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

  【教学目标】

  1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

  2、培养学生的分析能力与表达能力。

  【教学重点】掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

  【教学难点】正确地确定单位1

  教学过程备注

  活动一:分析题意,理解数量关系。

  教师出示例1:20xx年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的。我国人均耕地面积是多少平方米?

  教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

  教师然后让学生试着画一画线段图,分析题意。

  全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

  列式为:2500=

  学生独立完成。

  集体订正。

  活动二:巩固练习。

  1、教师出示做一做。

  这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

  然后再独立解答。

  2、完成练习四中的部分练习。

  活动三:课堂小结。

  板书:

六年级数学教案14

  教学内容:教材第58页例4,练习十一第9~14题

  教学目标:1、使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的试题。

  2、使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

  3、培养学生分析、推理和归纳、总结等思维能力。

  教学重难点:理解分数除以分数的计算方法,能正确地进行计算;并能总结、归纳出分数除法的计算法则。

  教学过程:

  一、教学例4

  1、出示例4,学生读题,列式。

  提问:这是已知什么,要求什么?用什么方法计算?

  追问:为什么用除法计算?怎样列式?

  板书:9/103/10 =

  2、引导探索:分数除以整数怎么算呢?

  (1)请大家画图探索一下9/103/10得多少?

  各自在书上的长方形里分一分,画一画。

  (2)指名到黑板上画一画,使大家清楚地看出是3瓶。

  (3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?

  板书::9/1010/3

  请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)

  得数相同,你能猜想到什么?

  板书::9/103/10

  =9/1010/3

  3、练习,验证猜想

  完成练一练第1题:先再长方形中涂色表示3/5,看看3/5里有几个1/5,有几个3/10,再计算。

  你发现了什么?

  4、概括方法

  联系前面学习的.分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?

  根据学生的讨论,板书:甲乙=甲1/乙(乙0)

  二、练习

  1、做练一练第2题。

  各自练习,并指名板演,练习后评议交流。

  2、完成练习十一第10题。

  各自独立完成,并指名板演,练习后评议交流。

  3、讨论练习十一第11题。

  独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?

  4、讨论练习十一第12题:

  不计算,用发现的规律直接判断左边的式子和右边数的大小。

  各自判断后指名交流:你是怎么想的?

  三、总结:通过学习,你有什么收获?

  四、作业:练习十一第9、13、14题。

六年级数学教案15

  教学内容:

  北师大(版)六年级数学(上册)第80页~第81页。

  教学目标:

  1、同学们要经历将眼睛、视线与观察的范围抽象为点、线、区域的过程。

  2、我们还要理解观察点、遮挡点、可视区域等词语的意思。

  3、感受观察范围随观察点、观察角度的变化而改变。

  教学重点:

  经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。

  教学难点:

  能运用“观察的范围”的相关知识解决日常生活中的一些问题。

  教学过程:

  一、古诗引入,导入课题。

  1.我们在小学学了五年的古诗,那么你们积累了那些古诗呢?谁能说一说。谁还记得王之涣写的诗《登鹳鹊楼》?齐读。

  这首诗中哪一句描述诗人登高远望时的感受,(欲穷千里目,更上一层楼)。作者为什么要说:欲穷千里目,须“更上一层楼 ”呢?今天我们就来研究“观察的 范围”,从数学的角度来研究这个问题。

  2.引入课题:观察的范围(板书课题)

  二、自主探究、发现规律。

  1、秋天到了,桃树下落了一地桃子,小猴闻到香味,在墙外向里张望 。可是前面一堵墙,小猴子能看到墙内的桃子吗?

  2、看,小猴子爬到了这个位置,能看见地上全部的桃子吗?你猜想小猴看见多少个桃子?看来,光靠眼睛看是不准确的,你们能不能想出办法,准确找到猴子看到多少桃子呢?说说你的想法。

  3、在A点时,我们把猴子的眼睛看作“观察点”,(板书:眼睛 观察点)。

  4、阻碍小猴子观察视线的是什么?(墙) 它的最高处在哪里?(墙的右上角 )

  5、我们把阻碍视线的这个最高点叫“阻碍点“(板书:阻碍点)。

  6、观察点和阻碍点进行连线,这条连线和地面的'交点,就是离墙最近的点。

  连接观察点、墙的右上角、到地面的交点的线是一条什么线?(虚线) 这条虚线就是观察的视线。为什么要把视线画成虚线?(视线是看不见的,所以要画虚线)

  7、这条线能往上画一点吗?往上画会怎么样?(观察范围变小)

  这条线能往下画吗?往上画会怎么样?看来,这条线必须穿过围墙的右上角 。

  8、小猴子想看得更多桃子,该怎么办?(再往上爬)

  9、如果小猴子继续往上爬,爬到B处、C处,你能找到墙内离墙最近的点吗?(打开课本第80页,画一画)

  10、汇报

  11、观察点的变化,直接影响观察范围 的变化。那么,怎样确定观察范围 呢?

  先看( 观察点),再找(阻碍点),连接这两点,延长到(地面的交点)确定观察范围(齐读一遍)。

  12、我们把三次观察的结果放在一起,你发现了什么?

  观察的范围与观察的高度有关,还与什么有关?

  (观察的范围与观察的高度、观察的角度有关)

  小猴爬得越高,看到的桃子越 多 ;说明小猴看到的范围就越 大 。

  可见,观察点越高,观察的范围越大。(板书:观察点越高,观察的范围越大。)

  13、联系古诗:现在你明白王之涣为什么说“欲穷千里目,更上一层楼”吗?

  你能从数学的角度来探究其中的道理吗?说明了“站得高才能看得远”的道理。

  三、应用新知,解决问题。

  下面,请同学们 用学过的知识,解决一些生活问题。

  1.完成课本80页试一试第1题。

  2.课本80页试一试第2题。变化的楼房。

  (1) 如果客车继续向前行驶,那么他所能看到B楼的部分是如何变化呢?生:逐渐缩小

  (2) 客车行驶到位置2时,司机还能看到建筑物B吗?为什么?

  3.小猫捉老鼠。一天小花猫出来散步,迎面遇到了一堵残墙,有一只聪明的小老鼠就躲在这堵残墙的后面。

  (1)请你在图中画出小老鼠可以活动的区域。(学生在课本上操作)

  (2)如果你是小猫,你希望自己的位置怎样变化?如果你是小老鼠,你希望小猫的位置怎样变化?

  (3)比一比:小猫的位置改变后,它的观察区域分别有什么变化?说一说你的发现。

  4.(1)在黑夜里把一个球向电灯移动时,球的影子是怎样变化的?

  (2)晚上与家长在路灯下散步,当走向路灯时,你的影子是如何变化的?远离路灯 时呢?

  5、在城市建设中,规定两幢楼的距离不能太近。为什么?

  6、小丽能看到甲楼上的A点吗?能看到甲楼上的B点吗?

  7、填空

  (1)观看物体时,站的越( ),观察到的范围就越( )。

  (2)路灯下物体影子的变化规律是,离路灯越近,物体的影子就越( );离路灯越远,物体的影子就越( )。

  (3)红红和芳芳分别住在同一栋房的4楼和8楼,她们观看夜景,( )比 ( )观察的范围要大。

  8、判断题

  (1) 同样的电线杆离路灯越远,它的影子就越长。( )

  (2)人远离窗子时,看到窗外的范围变大。 ( )

  四、归纳整理,全课总结。

  这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?怎样确定观察范围?

【六年级数学教案】相关文章:

六年级数学教案01-05

六年级下册人教版数学教案11-13

苏教版六年级数学教案05-09

六年级数学教案:比的应用04-07

六年级数学教案【热门】02-25

六年级数学教案【推荐】02-25

【精】六年级数学教案02-28

【热】六年级数学教案02-21

六年级数学教案比的化简04-08

六年级数学教案《比的应用》04-04