【荐】高中数学教案
作为一名默默奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?以下是小编整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学教案1
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的',对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学教案2
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。
(5)进一步理解数形结合的思想方法。
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。
②本节的难点是曲线方程的概念和求曲线方程的方法。
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的'完备性和纯粹性。
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。
(4)从集合与对应的观点可以看得更清楚:
设表示曲线上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合。
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即
文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。
高中数学教案3
1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事!
2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的!加油吧!
3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的成绩!
4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!
5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的努力,你会更出色的!
6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的'孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。
7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你!
8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你!
9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步!
10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的!
高中数学教案4
教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。
因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试判断哪一条直线在点P附近更加逼近曲线;
(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?
(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。
思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1 试求在点(2,4)处的切线斜率。
解法一 分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习 试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结 求曲线上一点处的切线斜率的'一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。
思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解 设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。
五、课外作业
高中数学教案5
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的'单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案6
1. 该生能以校规班规严格要求自己。有较强的集体荣誉感,学习态度认真,能吃苦,肯下功夫,成绩稳定。生活艰苦朴素,待人热情大方,是个基础扎实,品德兼优的好学生。
2. 该生能严格遵守学校的规章制度。尊敬师长,团结同学。热爱集体,积极配合其他同学搞好班务工作,劳动积极肯干。学习刻苦认真,勤学好问,学习成绩稳定,学风和工作作风都较为踏实,坚持出满勤,并能积极参加社会实践和文体活动,劳动积极。是一位发展全面的好学生。
3. 你是同学拥护、老师信任的班委,乖巧懂事、伶俐开朗、自信大方、乐观合群,是同学们学习的榜样。你爱护集体荣誉,有很强的工作能力,总是及时协助老师完成班务工作,是老师的得力帮手。你心性坦荡,个性鲜明,能大胆说出自己的想法,难能可贵。而你在运动场上的爆发力更让老师同学们惊叹!潜力深厚,希望在高中时期能逐渐发掘出来!
4. 你是个做事小心翼翼,感情细腻丰富的女孩,每次看你认真的样子老师都很感动。你也是幸运的,周边有很多人都在关爱着你,所以,对他们,尤其是父母,记得不要太莽撞,不要太任性,要学着体谅,学着换位思考,学着懂事。另外,今后要多运动、多锻炼,有健康才能成就美好未来!
5. 你坚强勇敢、乐观大方的性格让老师非常欣赏。学习上始终保持着上进好学的决心和韧性,生活中始终能做到豁达开朗,还有着良好的审美和绘画的专长,令人钦佩!以入世的态度做事,以出世的态度做人,这是我送你的一句话,希望你保持好心态,迎接新的学习生活。
6. 最有希望得成功者,并不是才干出众的人,而是那些最善于利用时机去努力开创的人。你是很有才华的孩子,老师希望你能把握好机会,求得上进。你聪明,但也有着许多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,坚定目标致力于学习,定能大限度地发挥你的聪明才智!
7. 该生遵纪守法,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。是一位诚实守信,思想上进,尊敬老师,团结同学,热心助人,积极参加班集体活动,有体育特长,学习认真,具有较好综合素质的优秀学生。
8. 你聪颖活泼,浑身洋溢青春气息。你爱好广泛,善钻精思,具备一定能力,潜质无限。但是在有些时候,在面临一些问题的时候,你总表现得太过紧张,其实,征服畏惧、建立自信的最快最确实的方法,就是大胆地去做你认为害怕的事,直到你获得成功的经验。继续努力!
9. 你是对3班这个集体的成长贡献很大的孩子,是老师的得力帮手。你干练沉稳,坚强隐忍,能从大局出发考虑问题,在很多时候能独当一面。你独立能力强,能够吃苦,但在进入高中的学习上却显得有些吃力。其实你还有很深的潜力尚未挖掘,找对方法,好好加油,世上没有绝望的处境,只有对处境绝望的人,请乐观一点,踏实地走好接下来的每一步!
10. 你是个能独立、有主见的女孩,有自己的想法,有一定的决断力。但是独立不代表乖张,有想法不代表恣意妄为。令人高兴的是,你在这点上做的还是不错的。晟君,老师希望你能一如既往地关注于学习而不懈怠,能坚持怀揣着平和感恩的心态简单快乐地生活。
11. 你给我的第一印象是有些沉默,其实和朋友在一起时还是很有自己想法的对吧?你看,你布置的新年教室多么出彩!请继续秀出真实而精彩的你!这半个学期的学习有点力不从心,请保持谨慎和细心,保持好的学习习惯,及时弥补所缺漏的环节,大步向前进!
12. 该生认真遵守学校的规章制度,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。尊敬师长,团结同学。学习态度认真,能吃苦,肯下功夫,成绩稳定上升。是有理想有抱负,基础扎实,心理素质过硬、全面发展的优秀学生。
13. 你是一个真诚待人、温柔可爱的女生。也许是因为你有些不紧不慢的性格,所以在学习上有时候行动力不够坚决,造成了学习成绩的不稳定。请多利用假期时间好好补缺补漏,向上的姿态才是最重要的!
14. 老师同学们都在说你是个很有责任心和上进心的孩子,在班级需要的时候,你承担了劳动委员的'重任,经常最后一个离开,就为了班级能有个整洁的环境。老师很感谢你!而更可贵的是,你懂得安排自己的时间,在工作的空隙抓紧时间做作业。希望下学期你的学习成绩也能随你的毅力和执着步步攀升,加油,羽腾!
15. 其实你拥有你自己都不确知的才华,从你的文字中可以读出这样的信息:你时常沉醉在自己的小世界中,做自己喜欢做的事情。老师希望你能敞开心扉,多与旁人交流你快乐的体验和想法,不要吝啬展示自己!还有,成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。请务必抓紧每寸光阴,努力学习!
16. 你知道吗?在世界上那些最容易的事情中,拖延时间是最不费力的。而学习却是艰辛的劳动过程。表面安静的你其实心里有着自己的想法和烦忧。于是在不经意间,精力被不自觉地转移到一些琐事上,却总无法完全集中心智于学业。也许你也已经意识到,也有了些许进步,那么请千万记住要持之以恒,要付出比别人更多倍的努力!
17. 你是班级的数学科代表,老师很高兴选择你担任这个职务,不仅能促进自己的进步,而且也展现了你负责工作的一面。但是学习是要和工作一样,需要一丝不苟的态度,包括上课的听讲是否及时而有效,包括功课的完成是否严谨而认真。下学期,愿看到一个更加全神贯注更加专心致志的你!
18. 我一直难忘在运动会上你担任前导牌的样子,为班级添光增彩了不少!你有着绘画的特长,是个善良、真诚的女孩,有着细腻丰富的内心,也许只需一点鼓励,你便会勇敢走下去,希望能在平时多听见你爽朗的笑声!
19. 可爱、热情、谨小慎微,这都是你的代名词。你略为腼腆的微笑让人印象深刻。老师一直认为你是能够认真仔细地作好每一件事情、成就每一个细节的,因此,希望你能珍惜时间,提高效率,在学习上狠狠加油!
20. 其实,任何事都是有重量的,那么,就看你把它变成压力还是重力了。在这个方面,我很高兴地看到你做的很好,你学习自觉,成绩便是努力的证明。老师安排你做物理科代表就是希望能多培养你的责任意识、大局意识和管理能力,希望以后在这方面能看到你更加出色的表现!
21. 你是个可爱善良,懂事乖巧的女孩。作为语文科代表,兢兢业业,一丝不苟。你对人也是特别真诚热情,偶尔透露出的忧郁是旁人不易察觉的。但是你知道,成长就是破蛹成蝶的过程,高中是人生的重要阶段,勇敢地迈好每一步吧,享受成长带来的所有痛苦和快乐!
22. 你很有能力,也很潜力,但欠缺的却是耐力和毅力。君子厚积而薄发,希望你能振作精神,跟上进度,迎头赶上,期待你获得更大的进步!
23. 你曾经和我说过你的理想,但你对理想的憧憬和你所付出的努力程度却总是难成正比。若现在你觉得有障碍挡在前行之路上,那就说明你还没有把目标看的足够清楚。宁在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在临事时无法适从。你现在欠缺的就是对自己发狠奋进的恒心,柏宇,“要想人前显贵,必定人后受罪”,成功要靠实践去争取,而不是光靠几句好听的决心话!
24. 你乖巧大方,组织能力一流,但在学习上总显得有些力不从心。快马加鞭迎头赶上固然是必需,但也别太心急,要知道,欲速则不达,只要踏实努力,不懂就问,采用适合自己的学习方法,就会看到进步。也许刚开始的时候进步很小,小到你看不见,但是不要灰心,万事开头难!将事前的忧虑,换为事前的思考和计划,彻底放松,加强锻炼,养足精神再迎战!你能做到的,蔡炜,加油!
25. 该生能遵守校纪班规,尊敬师长,能与同学和睦相处,勤学好问,有较强的独立钻研能力,分析问题比较深入、全面,在某些问题上有独特的见解,学习成绩在班上一直能保持前茅,乐于助人,能帮助学习有困难的同学。
26. 不论在体育场还是教室里,看到你神采奕奕的样子,总让人联想到“英姿飒爽”这四个字。这确是一个高中生应该有的精神面貌。你做事认真,顾全大局,真的非常难得。希望能保持这样良好的状态,继续前进!也希望能够多和老师同学交流,多提些对班集体建设的好建议!
27. 该生能以校规班规严格要求自己,积极参加社会实践和文体活动。尊敬师长,团结同学。集体观念强,劳动积极肯干。积极参加各种集体活动和社会实践活动。学习目的明确,刻苦认真,成绩稳定,是一个有理想、有抱负,基础扎实,心理素质过硬,全面发展的优秀学生。
28. 我很高兴看到你是个有上进心,有责任感,能够让家人、师长宽慰的孩子。有努力就有回报,你下半学期的表现不就证明了这一点吗?进步是随着时间节节上升的,不要太过急躁,要知道,若你不给自己设限,则人生中就没有限制你发挥的藩篱。新学期要重整旗鼓,再接再励!
29. ××× 独立性较强,对自己的能力也有准确的定位。建议今后学习上要养成勤思爱问的习惯,不能做井底之蛙,满足于现状,要充分利用他人的智慧,最后达到“好风凭借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋头苦读的身影,可见读书的态度很端正;而你每一次考试的成绩虽然不拔尖,却是在稳步前进,可见读书的效率还不错。请继续保持这种虚心求学、稳步前进的态势,相信一年半以后的高考,你必将崭露头角,脱颖而出。
高中数学教案7
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的'坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2<│z│<3.
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
高中数学教案8
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的.射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中数学教案9
内容分析:
1、 集合是中学数学的一个重要的基本概念
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础
例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念
学习引言是引发学生的`学习兴趣,使学生认识学习本章的意义
本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识
教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集
”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}
(2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}
(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}
(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}
(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集,记作N*或N+
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写。
高中数学教案10
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的`实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学教案11
教学准备
教学目标
熟悉两角和与差的正、余公式的`推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程
复习
两角差的余弦公式
用- B代替B看看有什么结果?
高中数学教案12
教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题;
2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;
3.进一步提高学生的合作意识和探究意识。
教学重点:线性规划的概念及其解法
教学难点:
代数问题几何化的过程
教学方法:启发探究式
教学手段:运用多媒体技术
教学过程:1.实际问题引入。
问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?
2.探究和讨论下列问题。
(1)实际问题转化为一个怎样的数学问题?
(2)满足不等式组①的条件的点构成的区域如何表示?
(3)关于x、y的一个表达式z=70x+50y的几何意义是什么?
(4)z的几何意义是什么?
(5)z的最大值如何确定?
让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.
则zmax=6×70+6×50=720
结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.
解题反思:
问题解决过程中体现了那些重要的数学思想?
3.线性规划的有关概念。
什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.
4.进一步探究线性规划问题的解。
问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?
要求:请你写出约束条件、目标函数,作出可行域,求出最优解。
问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?
5.小结。
(1)数学知识;(2)数学思想。
6.作业。
(1)阅读教材:P.60-63;
(2)课后练习:教材P.65-2,3;
(3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。
《一个数列的研究》教学设计
教学目标:
1.进一步理解和掌握数列的有关概念和性质;
2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
教学重点:
问题的提出与解决
教学难点:
如何进行问题的探究
教学方法:
启发探究式
教学过程:
问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?
2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?
开展研究性学习,培养问题解决能力
一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式
通过实施“问题解决”课堂教学模式,希望能够达到以下的.功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程
(四)“问题解决”课堂教学评价标准
1. 教学目标的确定;
2. 教学方法的选择;
3. 问题的选择;
4. 师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径
(六)开展研究性学习活动对教师的能力要求
高中数学教案13
【课题名称】
《等差数列》的导入
【授课年级】
高中二年级
【教学重点】
理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。
【教学难点】
等差数列的性质、等差数列“等差”特点的理解,
【教具准备】多媒体课件、投影仪
【三维目标】
㈠知识目标:
了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;
㈡能力目标:
通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;
㈢情感目标:
通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。
【教学过程】
导入新课
师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:
(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()
(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?
(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?
(4)10072,10144,10216,(),10360
请同学们回答以上的四个问题
生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。
师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。
生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.
师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。
生1:相邻的两项的`差都等于同一个常数。
师:很好!那作差是否有顺序?是否可以颠倒?
生2:作差的顺序是后项减去前项,不能颠倒!
师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。
推进新课
等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。
师:有哪个同学知道定义中的关键字是什么?
生2:“从第二项起”和“同一个常数”
高中数学教案14
一、教材分析
1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:
知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:
重点:“二面角”和“二面角的平面角”的概念
难点:“二面角的平面角”概念的形成过程
二、教法分析
1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
三、学法指导
1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。
2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。
3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。
四、教学过程
心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。
(一)、二面角
1、揭示概念产生背景。
问题情境1、在平面几何中“角”是怎样定义的?
问题情境2、在立体几何中我们还学习了哪些角?
问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。
通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。
问题情境4、那么,应该如何定义二面角呢?
创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。
问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面
与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。
问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。
2、展现概念形成过程
(1)、类比。教师启发,寻找类比联想的对象。
问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。
问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。
问题情境9、这个平面的角的顶点及两边是如何确定的?
(2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。
问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。
(3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。
(4)、继续探索,得到定义。
问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的'顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。
(5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。
(三)、二面角及其平面角的画法
主要分为直立式和平卧式两种,用电脑《几何画板》作图。
(四)、范例分析
为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。
例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。
分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。
变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。
题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)
(五)、练习、小结与作业
练习:习题9.7的第3题
小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。
作业:习题9.7的第4题
思考题:见例题
五、板书设计(见课件)
以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!
高中数学教案15
一.教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二.目标分析:
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三.教法分析
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的`精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
【高中数学教案】相关文章:
高中数学教案10-25
高中数学教案08-28
【推荐】高中数学教案01-25
【热】高中数学教案01-26
高中数学教案【荐】01-29
高中数学教案范文05-01
高中数学教案【热门】01-10
高中数学教案模板02-02
高中数学教案【热】01-21