五年级数学教案

时间:2024-08-14 12:56:03 教案 我要投稿

五年级数学教案通用15篇

  作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?下面是小编精心整理的五年级数学教案,欢迎大家分享。

五年级数学教案通用15篇

五年级数学教案1

  教学理念:

  让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

  教学过程:

  一、课前探疑

  学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

  二、课始集疑

  1、揭题

  2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

  过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

  三、课中释疑

  <一>认识天平:课件出示天平,同学们说天平的作用、用法。

  <二>认识等式

  1、演示课件 写出式子

  在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?

  你能用一个数学式子来表示这时候的现象吗? 40+50<100

  再在左边放一个30克的物体,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+30>100

  把左边的一个30克的物体换成10克的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+10=100

  再把左边的10克与50克的物体换成未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X<100

  再把左边的未知的物体换成另一个未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X=100

  再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? X + X=150

  2、分类

  刚才我们写出了这么多的`式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

  展示同学们不同的分类,并说说你们是按照什么标准分的?

  师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)

  3、理解概念

  师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等

  揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)

  谁来举一些例子说说什么是等式?

五年级数学教案2

  一、 单元学习内容的前后联系

  已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。

  本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。

  后续的相关内容:本册第五单元 异分母分数加减;加减混合运算;分数与小数的互化。第十册:分数乘法分数除法

  二、单元编写特点与教学策略

  1、在具体情境中进一步理解分数,体会分数的相对性

  教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。

  在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。

  2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。

  除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。

  3、经历知识的形成过程,探索分数的基本性质

  分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

  探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的`分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。

  4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法

  本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。

  三、从《分数的基本性质》谈教学策略

  “整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。

  (1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。

  (2)部分观察。先引导学生对其中一组数 = = ,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:

  得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。

  接着,引导学生从右向左观察,并练习:

  得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。

  在让学生观察其他几组分数,能得出同样的规律。

  (3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。

五年级数学教案3

  整理和复习

  教学要求掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。

  教学准备投影片(仪)

  教学过程

  一、边练习边复习

  学生在课本上自己完成,并根据题目体会:

  1.分段对数据整理的方法

  2.怎样从复式统计表中获取信息。

  3.求平均数应用题应该注意什么问题?

  二、学生小组合作学习

  1.统计的步骤是什么?对应的方法是什么?

  2.求平均数应用题的思路是什么?(分什么;按什么分)

  三、课堂实践

  练习四的1~3题。

  四、课外实践

  练习四的`第4题。

  课后反思:

  学生习惯于用自己的方法进行学习,因此在教学中应该鼓励学生大胆地去尝试,用多样化的方法方式进行探索。

五年级数学教案4

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的`面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

五年级数学教案5

  课题:第五单元:练习十七(1)第课时总序第个教案

  课型:练习编写时间:年月日执行时间:年月日

  教学内容:教材P80~81练习十七第2、3、6、7题。

  教学目标:

  知识与技能:巩固学生对列方程解决稍复杂的问题的学习。

  过程与方法:经历列方程解决稍复杂的实际问题的过程,培养学生分析、解决问题的能力。

  情感、态度与价值观:培养学生的发散思维能力,养成认真审题、仔细解答的良好学习习惯。

  教学重点:正确分析题目中的数量关系并列出方程。

  教学难点:找等量关系,掌握列方程的方法。

  教学方法:引导回顾,分析解答。小组合作探究。

  教学准备:多媒体。

  教学过程

  一、复习回顾

  教师:昨天,我们学习了有关方程的哪些知识?

  学生:列方程解决稍复杂的.问题。

  出示下列问题,只列方程。

  1.图书室文艺书比科技书多180本,文艺书的本数是科技书的3倍。文艺书和科技书各有多少本?

  2.养鸡厂养母鸡和公鸡共400只,母鸡的只数是公鸡的7倍。母鸡和公鸡各有多少只?

  3.钢笔每支18.5元,甜甜买钢笔和铅笔各2支,共用了38.8元。铅笔每支多少钱?

  学生先独立思考,指名学生口答。

  二、指导练习

  1.教材第80页练习十七第2题。

  (1)出示第80页练习十七第2题。

  (2)教师指名学生说题意,并对学生做环保教育。

  提问:已知什么,要求什么?

  学生汇报。

  (3)教师:该如何列方程解决呢?

  让学生独立解决,教师巡视,并强调解题的规范性。

  (4)教师点评两种不同的列方程的方法,并订正。

  2.教材第80页练习十七第3题。

  (1)出示教材第80页练习十七第3题。

  (2)组织学生阅读题目,获取题目中的有用信息。

  (3)教师:怎样列方程解决这个问题呢?

  组织学生独立思考后,在小组中交流解决问题的思路。

  (4)学生汇报:

  解:设102室本次的水表读数是x。

  ①(x-3102)×2.5=135x=3156

  答:102室本次的水表读数是3156。

  2.5x-3102×2.5=135x=3156

  答:102室本次的水表读数是3156。

  三、巩固拓展

  1.通过抓不变量解决差倍问题

  出示:红红今年11岁,爸爸今年39岁,红红几岁时,爸爸的年龄是红红的3倍?

  学生阅读题目,理解题目意思。

  思路导引

  设红红的年龄为x岁,则爸爸的年龄就是3x岁,根据年龄差不变,列方程解答。

  学生小组交流,尝试解答,集体汇报。

  教师根据学生汇报板书:解:设红红x岁时,爸爸的年龄是3x岁。

  3x-x=39-11

  2x=28

  x=14

  答:红红14岁时,爸爸的年龄是红红的3倍。

  教师小结:在解决年龄问题时,关键是要找出题目中不变的量(即年龄差)。

  即时练习:李老师今年42岁,轩轩今年9岁,当轩轩几岁时,李老师的年龄是轩轩的4倍?

  2.通过抓信题目中的隐含条件解决鸡兔同笼问题。

  出示:鸡兔共有8个头,26只脚,求鸡和兔各有几只。

  学生阅读题目,理解题目意思。

  思路导引

  ⑴分析题目中的隐含条件:一只鸡有2只脚,一只兔有4只脚。

  ⑵根据等量关系:兔的脚数+鸡的脚数=总脚数,可列出方程:

  4x+2(8-x)=26

  学生小组交流,尝试解答,集体汇报。

  教师根据学生汇报板书

  解:设兔有x只,那么鸡有(8-x)只

  4x+2(8-x)=26

  4x+16-2x=26

  2x+16=26

  2x=10

  2x÷2=10÷2

  x=58-x=8-5=3

  答:鸡有3只,兔有5只。

  四、课后小结。通过这节课,你有什么新的收获?

  作业:教材第80~81页练习十七第6、7题。

  板书设计

  练习十七

  不变的量:年龄差一只鸡有2只脚,一只兔有4只脚。

  3x-x=39-11兔的脚数+鸡的脚数=总脚数

  4x+2(8-x)=26

五年级数学教案6

  教材分析

  一、主要教学内容

  (一)数与代数

  1、第一单元“小数除法”

  本单元学生已掌握了整数混合运算顺序及运算律、整数乘除法、小数加减法、小数乘法的计算方法,并能利用这些知识解决生活中的实际问题,除数是整数的小数除法是学习小数除法的基础,它是根据整数除法迁移过来的,利用商不变的规律可将其转化为整数除法,体现了转化的思想。通过这部分内容的学习,学生需要掌握小数小除法的计算方法,同时增进对相关运算律的理解,提高运用四则运算解决简单实际问题的能力,包括用“四舍五入”法求积、商的近似值,了解除数大于1(或小于1、接近1)时,商和被除数的关系。学生要能用估算判断计算结果的正确性,并能举例说明估算在现实生活和数学学习的重要性。

  2、第三单元“倍数与因数”

  本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,

  理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决生活中一些简单问题。

  通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的`需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

  3、第四单元“分数的意义”

  在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过

  具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。

  通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

  (二)空间与图形

  1、第二单元“轴对称和平移”

  学生在第一学段已初步感知生活中的对称、平移和旋转现象,初步认识了轴对称图形。本单元教科书编写的基本特点主要体现在一下几个方面:1.重视结合已有知识和折纸、画图等经验,进一步学习轴

五年级数学教案7

  【教学目标】

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象思维能力。

  【重点难点】

  1.掌握因数、倍数、质数、合数等概念的联系及其区别。

  2.掌握2、5、3的倍数的特征。

  3.质数和奇数的区别。

  【教学指导】

  由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

  2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

  【课时安排】

  建议共分7课时

  1.因数和倍数2课时

  2.2、5、3的倍数的特征3课时

  3.质数和合数2课时

  【知识结构】

  因数和倍数(1)

  学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

  学习目标1.从操作活动中理解因数和倍数的意义,会

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情

  教学重点理解因数和倍数的含义

  教学难点判断一个数是不是另一个数的因数或倍数。

  教具运用课件

  教学方法二次备课

  教学过程

  【复习导入】

  1.教师用课件出示口算题。

  10÷5=16÷2=12÷3=100÷25=150×4=

  220÷4=18×4=25×4=24×3=20×86=

  学生口算

  2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的.因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

  A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  板书设计因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  教学反思

  【作业设计】

五年级数学教案8

  教学内容:

  人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

  教学目的:

  1、使学生理解相遇问题的意义及特点。

  2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

  3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

  教学重点:

  理解相遇问题的数量关系,建立解题思路,掌握解题方法。

  教学难点:

  理解相遇问题中速度和、相遇时间和总路程之间的关系。

  教学准备:

  计算机辅助教学软件一套。

  教学过程:

  一、动画引入,揭示课题

  1、通过电脑演示了解相遇问题中两个物体的运动情况。

  电脑演示一声枪响后,两人相向而行,相遇前停下来。

  提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?

  (板书:同时出发、相向而行)

  如果他们继续走下去,结果可能会怎样?

  (相遇、不相遇就停下来、相遇以后相交而过)

  结果究竟怎么样呢?请同学们继续观察。

  电脑演示两人相遇。

  (板书:结果相遇)

  谁能完整的说说他们是怎样运动的?

  [评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

  2、揭示课题:

  像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。

  (板书课题:相遇问题)

  过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?

  (板书:速度×时间=路程)

  今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。

  二、引导探究,教学新知

  (一)教学准备题。

  1、电脑配音显示准备题。

  我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。

  走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分

  讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?

  ②相遇时,两人所走路程的和与两家的距离有什么关系?

  2、观察填表,讨论分析。

  (1)学生填写表格,并讨论屏幕上的两个问题。

  (2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

  (3)学生回答讨论的两个问题。

  小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

  [评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

  (二)教学例5。

  1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?

  2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)

  3、学生自己分析解题思路:

  ①请用第一种方法的同学说说你是怎样想的?

  提问:题中只有一个4,为什么算式中出现了两个4?

  师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。

  ②请用第二种方法的同学说说你的解题思路又是什么?

  [评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]

  4、通过电脑演示强化两种解法的解题思路。

  通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。

  电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。

  [评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的.概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]

  5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?

  (板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?

  6、学生看书质疑。

  三、巩固练习,深化提高

  1、根据题意连线。

  两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。

  44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5

  相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。

  (59页做一做第1题)

  2、只列式不计算。(练习十三1、2题)

  学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。

  [评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]

  四、闯关游戏,拓思创新:

  电脑演示闯关画面,配音出示游戏规则。

  1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?

  提问:用速度和乘以时间得到了路程,为什么还要加120?

  2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?

  3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?

  提问:为什么每一种算法都要减90?

  4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。

  [评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]

五年级数学教案9

  教学内容:小数四则混合运算和简便算。

  教学目标:

  通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。

  教学过程:

  一、挂出小黑板视算。

  4.8÷81.6÷0.412.12÷120.32÷0.4

  4÷0.51÷250.25×400.13×5

  2.5×4÷40.1×0.8÷1004.2÷0.6÷7

  0.125×1.5×88.4÷8.4+61-0.25÷0.5

  二、先说出运算顺序,再计算。

  课本第34页的第7题,请4个学生板演后,师讲评。

  比一比,看谁算得又对又快。把得数直接填在课本第35页的第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。

  三、简便计算。

  引导学生看课本第34页的`第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)

  整数的运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。

  四、幻灯演示课本第36页的第7题。

  这是一张不完整的发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。

  五、独立作业

  第35--36页的第5、6题。

五年级数学教案10

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的.速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学教案11

  平均数的初步认识

  教学目标:

  1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

  2、能正确列式解答“求平均数”问题。

  教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

  教学过程:

  一、引入

  1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

  二、新授

  1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

  刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

  生:用4来表示……; 用5来表示……。

  师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

  生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

  师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

  遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

  2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

  第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

  师:你觉得用几来代表他1分钟的水平呢?

  生:计算,是4。

  师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

  生:3+7+2=12个 12÷3=4个(板书算式)

  生:还可以用移多补少的'方法,把7拿出1给3,再拿出2给2。(媒体)

  师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

  我们说,4是3、7、2这3个三个数的平均数。

  那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

  生:他投了3次,所以4是3、4、5的平均数。

  师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

  师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

  3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

  师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

  老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

  老师第四次投中了1个。我赢了还是输了?算一算。

  如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

  三、练习

  1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

  不然移多补少补给谁去呢?

  2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

  3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

  生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

  出示水下图片。

  师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

  4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

  5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

  四、总结

五年级数学教案12

  教学目标

  1、通过活动使学生感受并认识圆,知道什么是圆心、半径和直径,能借助于工具画出指定大小的圆。

  2、经历猜想、操作、验证、讨论和归纳等数学活动,发现并掌握圆的有关特征,会应用圆的有关知识解决简单的实际问题。

  3、通过活动使学生进一步积累认识图形的学习经验,增强空间观念,体验图形与生活的联系,感受平面图形的学习价值。

  教学重点

  认识圆、掌握圆的有关特征、会用工具画圆。

  教学难点

  掌握圆的有关特征。

  教学准备

  教师:大圆规、课件、1张圆纸片学生:小圆规、剪刀、4张白纸

  教学过程

  教师活动

  学生活动

  一、感受认识

  1、课件出示一枚硬币。

  (1)提问:硬币的'面是什么形状的?板书课题:圆

  (2)出示图片问:你能从里面找到圆吗?

  2、用手在空中画一个圆。

  问:圆和我们以前学过的平面图形有什么不同?

  生:圆形

  空中画圆

  二、自主画圆

  1、师:如果要你画一个圆,你准备怎么画?

  解释:“不以规矩,不成方圆”的本意

  选择一种方式动手画圆。

  2、提问:用什么工具能画一个标准的圆?

  (1)第一次用圆规画圆,感受圆规画圆的技巧

  (2)(视频演示)再次用圆规画圆,学会用圆规画圆的技巧

  师:用圆规画圆有哪些步骤?

  生:……

  画圆1

  生:圆规

  画圆2、3

  生:……(剪圆)

  三、寻找特征

  1、认识圆心

  (1)指出:用圆规画圆时,针尖固定的这一点叫做圆心。板书:圆心

  (2)圆心的作用

  师在黑板上随处点一个点问:我把圆心点在这里,你觉得这个圆会画在哪里?点在那里呢?这说明了什么道理?

  标圆心

  生:圆心位置决定圆的位置

  2、认识直径

  (1)把圆对折1次打开描出折痕,看有什么发现?

  指出:通过圆心并且两端都在圆上的线段是直径。板书:直径

  (2)探寻直径的特征

  ①师在黑板上画几条线段问是不是直径

  ②直径有多少条?它们的长度都相等吗?

  生:折痕都通过圆心

  画直径并测量

  3、认识半径

  (1)在圆中画出一条半径问学生:是直径吗?

  指出:连接圆心和圆上任意一点的线段是半径。板书:半径

  (2)探寻半径的特征

  (3)画一个半径是3厘米的圆

  画半径并测量

  画圆4

  教师活动

  学生活动

  4、探索半径与直径的关系

  (1)出示:刚才我们研究了直径和半径的的各自特征,直径和半径之间有什么关系呢?

  (2)用字母式子表示:板书:d=2r或者r=d÷2

  (3)画一个直径是4厘米的圆,你准备怎么画?

  (4)完成练习十七第1题。

  测量探索

五年级数学教案13

  教学内容:

  《义务教育课程标准实验教科书数学》五年级下册5-6页。

  教学目标:

  1、进一步认识图形的旋转变换,探索图形旋转的牲和性质。

  2、能在方格纸上将简单的图形旋转90度。

  3、初步学会运用旋转的方法在方格纸上设计图案,发展空间观念。

  4、欣赏图形的旋转变换所创造出的美,培养审美能力,感受旋转在生活中的应用,体会数学的价值。

  教学准备:

  多媒体课件,每4人或6人小组,一个风车实物模型。

  教学过程:

  一、联系生活,引入新课。

  师:上节课,我们认识了生活中的轴对称变换,其实,图形的变换还有许多种,比如:平移,旋转等等。这节课,我们就一起来研究生活中的旋转变换。

  生活中你见过哪些旋转现象?

  二、认识图形的.旋转,探索图形旋转牲与性质。

  1、认识线段的旋转,理解旋转含义。

  (1)观察,描述旋转现象。

  ①多媒体课件出示钟表,播放动画(指针从“12”指向“1”。

  师:请同学们仔细观察指针的旋转过程。谁能说一说是怎样旋转的?

  引导学生叙述:指针绕○顺时针旋转到30度到“1”。

  板书:指针从“12”绕点○顺时针旋转30度到“1”。

  师:想一想,为什么指针从12指向1就旋转了30度?指针走1个字旋转了多少度?2个字呢?你觉得怎样的旋转是顺时针?怎样的旋转是逆时针?

  ②多媒体课件出示钟表,播放动画。(指针从“1”指向“3”)

  师:这次指针是如何旋转的?

  引导学生叙述:指针从“1”绕○顺时针旋转60度到“3”。

  ③如果指针从“3”继续绕○顺时针旋转90度会指向几呢?

  学生回答后多媒体课件示钟表,播放动画给予验证。

  ④如果指针从“6”继续绕点○顺时针旋转180度会指向几呢?

  学生回答后多媒体课件出示钟晴,播放动画给予验证。

  (2)小结

  小结:要把一个旋转现象描述清楚,不仅要说清楚它的起止位置,更重要的要说清楚旋转围绕的点方向以及角度。

  2、认识图形的旋转,探究旋转的牲和性质。

  (1)观察风车的旋转过程。

  ①师:这是什么图形?风车的旋转你见过吗?看!在风的吹动下,风车就要旋转起来了。

  多媒体课件出示风车,播放动画。(风车旋转起来了)

  ②师:请注意观察风车是怎样旋转的?

  多媒体课件出示风车,播放动画。

  师:从图1到图2,发生了怎样的变化呢?

  ③师:风车从图1绕点○逆时针旋转多少度到图2呢?怎样才能知道风车旋转的角度呢?

  ④交流得出:风车从图1绕点○逆时旋转90度到图2。(板书)怎样才能知道风车旋转的角度呢?

  (2)继续观察风车的旋转。

  师:如果我们将风车在图2的基础上,继续绕点○逆时针旋转到图3,风车旋转了多少度?

  (3)揭示旋转后,什么发生了变化,什么没有变化呢?

  得出结论:三角形的位置变了,三角形的形状、大小、点○的位置,对应线段的长度,对应线段的夹角没有变。

  三、绘制图形,体验图形旋转的过程。

  师:我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?

  1、出示例4方格图,与学生一起明确画图要求;

  2、学生在方格纸上自主完成;

  3、作品展示,交流画法;

  4、小结画法。

  根据旋转的性质,旋转图形对应线段的长度不变,对应线段的夹角不变,我们在画一个旋转图形时,可以首先确定对应线段,然后连线。

  四、欣赏图形的旋转变换,感受旋转创造出的美。

  1、师:生活中,有很多美丽的图案都是由一些简单的图形旋转而来的,请欣赏第5页第1题,这些图形分别是由哪个图形旋转而来的呢?

  多媒体课件出示动画,演示图形的旋转。

  2、利用旋转画一条小花。

  学生自主画,然后交流,你是怎样画的?

  五、全课总结。

  师:通过这节课的学习,你有哪些收获和体会呢?

  布置作业:第9页第4、5题。

五年级数学教案14

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的'两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级数学教案15

  教学内容:

  P10例6、做一做,P13练习二第1—3题。

  教学目的:

  1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

  2、培养学生根据具体情况解决实际问题的能力。

  教学重点:

  用“四舍五人法”截取积是小数的近似值的一般方法。

  教学难点:

  根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

  教学过程:

  一、激发:

  1、口算。

  1.2×0.3 、0.7×0.5 、0.21×0.8 、1.8×0.5 、1—0.82 、1.3+0.74、 1.25×8 、0.25×0.4、 0.4×0.4 、0.89×1 、0.11×0.6、 80×0.05

  2、用“四舍五人法”求出每个小数的近似数。(投影出示)

  保留整数保留一位小数保留两位小数

  2.095

  4.307

  1.8642

  思考并回答:(根据学生的回答填空)

  (1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

  (2)按要求,它们的.近似值各应是多少?

  3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

  二、尝试:

  谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

  1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

  2、读题,找出已知所求。

  3、生列式,板书:0.049×45

  4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。

  5、引导学生观察、思考:

  (1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

  (2)保留一位小数,看哪一位?根据什么保留?

  (3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

  6、专项练习(根据下面算式填空)

  3.4×0.91=3。094积保留一位小数是(),保留两位小数是()。

  7、尝试后练习:

  ▲P10页做一做1。计算下面各题。

  0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)

  ▲判断,并改错。

  10.286×0.32=3.29(保留两位小数)

  3.27×1.5=4.95、 1.78×0.45≈0.80(保留两位小数)

  三、运用

  1、一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?

  虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。

  2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?

  3、059 3.578 3.574 3.583 3.585

  四、体验:谁来小结一下今天所学的内容?

【五年级数学教案】相关文章:

五年级的教案数学教案12-21

五年级数学教案01-06

五年级数学教案03-26

小学五年级数学教案05-22

五年级数学教案约分04-03

五年级数学教案练习04-04

众数的五年级数学教案01-17

苏教版五年级数学教案11-08

小学五年级数学教案02-08

【荐】五年级数学教案01-18