七年级数学下册教案

时间:2024-06-24 19:05:46 教案 我要投稿

七年级数学下册教案

  作为一名无私奉献的老师,编写教案是必不可少的,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?下面是小编收集整理的七年级数学下册教案,希望能够帮助到大家。

七年级数学下册教案

七年级数学下册教案1

  教学目标

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  对话探索设计

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的'判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

七年级数学下册教案2

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的`加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)

七年级数学下册教案3

  教学目标

  1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念

  2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、

  3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、

  重点:

  探索和掌握平行公理及其推论、

  难点:

  对平行线本质属性的理解,用几何语言描述图形的性质、

  教学过程

  一、创设问题情境

  1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

  学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

  2、教师演示教具、

  顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

  3、教师组织学生交流并形成共识、

  转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、

  二、平行线定义表示法

  1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、

  直线a与b是平行线,记作“∥”,这里“∥”是平行符号、

  教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、

  2、同一平面内,两条直线的位置关系

  教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、

  在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、

  三、画图、观察、归纳概括平行公理及平行公理推论

  1、在转动教具木条b的`过程中,有几个位置能使b与a平行?

  本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、

  2、用直线和三角尺画平行线、

  已知:直线a,点B,点C、

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  3、通过观察画图、归纳平行公理及推论、

  (1)由学生对照垂线的第一性质说出画图所得的结论、

  (2)在学生充分交流后,教师板书、

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行、

  (3)比较平行公理和垂线的第一条性质、

  共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的

  不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、

  4、归纳平行公理推论、

  (1)学生直观判定过B点、C点的a的平行线b、c是互相平行、

  (2)从直线b、c产生的过程说明直线b∥直线c、

  (3)学生用三角尺与直尺用平推方验证b∥c、

  (4)师生用数学语言表达这个结论,教师板书、

  结果两条直线都与第三条直线平行,那么这条直线也互相平行、

  结合图形,教师引导学生用符号语言表达平行公理推论:

  如果b∥a,c∥a,那么b∥c、

  (5)简单应用、

  练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、

  本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、

  四、作业:课本P16、7,P17、11、

七年级数学下册教案4

  教学目标

  1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

  2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;

  3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的'习惯。

  教学重点:

  寻找实际问题中的不等关系,建立数学模型。

  教学难点:

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

  教学过程(师生活动)

  提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你该怎么考虑,如何选择?

  探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。

  2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

  (1)什么情况下,到甲商场购买更优惠?

  (2)什么情况下,到乙商场购买更优惠?

  (3)什么情况下,两个商场收费相同?

  3、我们先来考虑方案:

  设购买x台电脑,如果到甲商场购买更优惠。

  问题1:如何列不等式?

  问题2:如何解这个不等式?

  在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x

  去括号,得

  去括号,得:6000+4500x-45004<4800x

  移项且合并,得:-300x<1500

  不等式两边同除以-300,得

  答:购买5台以上电脑时,甲商场更优惠。

  4、让学生自己完成方案(2)与方案(3),并汇报完成情况。

  教师最后作适当点评。

  解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠?

  问题1:这个问题比较复杂。你该从何入手考虑它呢?

  问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑?

  分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

  最后教师总结分析:

  1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

  2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

  3、如果累计购物超过100元,又有三种情况:

  (1)什么情况下,在甲商场购物花费小?

  (2)什么情况下,在乙商场购物花费小?

  (3)什么情况下,在两家商场购物花费相同?

  上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

  总结归纳:

  通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。

  布置作业:

  教科书第126页习题9.2第1题(1)(2)第3题1、2。

七年级数学下册教案5

  教学目标:

  (一)知识目标:

  1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  2、理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  (二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  (三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  教学重点:

  探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  教学难点:

  理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  教学过程:

  导入新课:

  为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、

  受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的`画面在纸的上、下方各留有x米的空白、

  想一想:

  (1)对于上面的画面小明得到如下的结果:

  第一幅画的画面面积是x(mx)米2、

  第二幅画的画面面积是(mx)(x)米2、

  他的结果对吗?可以表达得更简单些吗?说说你的理由、

  (2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?

  (3)如何进行单项式与单项式相乘的运算?

  教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级数学下册教案6

  教学目标

  1.知道有效数字的概念;

  2.会按要求进行近似数的运算

  教学过程

  一、创设情境,导入新课

  1.什么叫实数?实数怎么分类?

  2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?

  3.做一做

  如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?

  二、合作交流,探究新知

  1 交流上面问题的做法

  (1)估计同学们会有两种做法:

  用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)

  (2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:

  如果没有两种做法,也要想办法引出这两种做法

  两种做法的答案不同,哪一种答案正确呢?

  请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?

  这时两种做法的答案就一样了。

  从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。

  2、引入有效数字的概念

  在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?

  先思考:0.010256精确到小数点后面第三位,等于多少呢?

  0.0102560.0103

  近似数0.0103有三个有效数字1、0、3

  现在你能说说,什么叫近似数的有效数字吗?

  从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。

  考考你:1 近似数0.03350有几个有效数字,分别是______________________.

  2 125万保留两个有效数字等于__________

  3 有_______个有效数字。

  3、怎样进行近似值的运算?

  在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。

  例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。

  (2)在进行近似数的乘法和除法运算中,参与运算的'每一个数应多取一位有效数字。

  例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)

  考考你:1.计算(精确到小数点后面第二位)(1),(2)

  2.计算(保留三个有效数字)(1) (2)

  三、应用迁移,巩固提高

  例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?

  变式:上面问题中27倍改为:8倍,其他不变

  例4 已知求a+b的值。

  例5 设a、b为实数,且求的值。

  四、反思小结,拓展提高

  这节课,你认为最重要的是什么?

  1.有效数字的概念;2.实数的近似数的计算

七年级数学下册教案7

  教学目标:

  知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

  能力目标进一步培养学生分析、归纳和探索能力。

  情感目标:培养学生数形结合的思想。

  教学重难点:公式的应用及推广。

  教学过程:

  一、复习提问:

  1.(1)用较简单的代数式表示下图纸片的面积.

  (2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

  讲评要点:

  沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,

  这样裁开后才能重新拼成一个矩形。

  (3)比较(1)(2)的结果,你能验证平方差公式吗?

  学生讨论,自己得出结果

  2.(1)叙述平方差公式的数学表达式及文字表达式;

  (2)试比较公式的两种表达式在应用上的差异.

  说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的.问题,否则容易对公式产生各种主观上的误解.

  3.判断正误:

  (1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

  二、新课:

  运用平方差公式计算:

  (1)102×98;(2)(y+2)(y2)(y2+4).

  填空:

  (1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();

  思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

七年级数学下册教案8

  情景设置:

  同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。

  (每一个小长方形的长为a,宽为b)

  我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。

  从整体上看,“电视墙”的面积为长方形的'长与宽的积:3a·3b;

  从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。

  于是,我们有:3a·3b = 9ab.

  新课讲解:

  1.探索研究

  一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?

  请学生回答,教师加以总结归纳:

  两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.

  4ab·5b这两个单项式的积是20ab。

  同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。

  2.例题

  计算:(1)a·(6ab);

  (2)(2x)·(-3xy).

  解: (1)a·(6ab)

  = (×6)·(a·a)·b

  = 2ab;(教师规范格式)

  (2)(2x)·(-3xy).

  = 8x·(-3xy)

  = 【8×(-3)】(x·x)y

  = -24xy.

七年级数学下册教案9

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的.概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

  第八环节 作业布置

七年级数学下册教案10

  平方根教学设计

  一、情景引入(复习引入)

  1、求下列和数的算术平方根4、9、100、9/16、0.25

  2、如果一个数的平方等于9,这个数是多少?

  讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

  又如:,则x等于多少呢?

  二、探索新知

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  求一个数的平方根的运算,叫做开平方.

  例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

  2、观察:课本P45的图6.1-2.

  图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

  例4求下列各数的平方根。

  (1) 100 (2) (3) 0.25

  3、按照平方根的概念,请同学们思考并讨论下列问题:

  正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

  一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

  例5说出下列各式的意义,并求出它们的值。

  归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

  4、堂上练习:课本P46小练习1、2、3

  三、归纳小结(学生归纳,老师点评)

  1、什么叫做一个数的平方根?

  2、正数、0、负数的平方根有什么规律?

  3、怎样求出一个数的平方根?数a的平方怎样表示?

  四、布置作业

  P47-48习题6、1第3、4题。

  五、板书设计:

  6.1平方根

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  2、a的平方根记为:

  3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

  《平方根》同步练习题

  1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

  《6.1平方根》课时练习含答案

  1.下面说法正确的是( )

  A.4是2的平方根

  B.2是4的`算术平方根

  C.0的算术平方根不存在

  D.-1的平方的算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级数学下册教案11

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?

  例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授:

  我们再来看下面一个例子:

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?

  问:你能解决这个问题吗?有哪些方法?

  (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)&pide;44=264&pide;44=6(辆)

  列方程解应用题:

  设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。

  44x+64=328 (1)

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  (学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  小敏同学很快说出了答案。“三年”。他是这样算的:

  1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。

  2年后,老师47岁,同学们的年龄是15岁,也不是老师的'三分之一。

  3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。

  你能否用方程的方法来解呢?

  通过分析,列出方程:13+x=(45+x) (2)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

七年级数学下册教案12

  教学目标

  1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  教学重点与难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

  教学准备

  多媒体课件

  教学过程

  一、创设问题情境

  1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作XXXXXXXXXX,B处记作XXXXXXXXXX。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

  二、建立数学模型

  1、绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的'概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  注意:①与原点的关系②是个距离的概念

  2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6,0,-10,+10

  2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:

1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  3.出示题目

  (1)-3的符号是XXXXXXX,绝对值是XXXXXX;

  (2)+3的符号是XXXXXXX,绝对值是XXXXXX;

  (3)-6.5的符号是XXXXXXX,绝对值是XXXXXX;

  (4)+6.5的符号是XXXXXXX,绝对值是XXXXXX;

  学生口答。

  师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗

  5、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数

  ②一个数的绝对值是它的相反数,这个数是什么数

  ③一个数的绝对值一定是正数吗

  ④一个数的绝对值不可能是负数,对吗

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗

  (由学生口答完成,进一步巩固绝对值的概念)

  6、例2.求绝对值等于4的数

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴

  ②从几何意义上分析,画一个数轴

  因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  所以绝对值等于4的数是+4和-4.

  6、练习:做书上12页课内练习1、2两题。

  四、归纳小结

  1、本节课我们学习了什么知识

  2、你觉得本节课有什么收获

  3、由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  1、让学生去寻找一些生活中只考虑绝对值的实际例子。

  2、课本15页的作业题。

七年级数学下册教案13

  学习目标

  1. 理解有序数对的应用意义,了解平面上确定点的常用方法

  2. 培养用数学的意识,激发学习兴趣.

  学习重点: 理解有序数对的意义和作用

  学习难点: 用有序数对表示点的位置

  学习过程

  一.问题导入

  1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯.

  2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

  3.某人买了一张8排6号的电影票,很快找到了自己的座位。

  分析以上情景,他们分别利用那些数据找到位置的。

  你能举出生活中利用数据表示位置的例子吗?

  二.概念确定

  有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

  利用有序数对,可以很准确地表示出一个位置。

  1.在教室里,根据座位图,确定数学课代表的位置

  2.教材40页练习

  三.方法归类

  常见的确定平面上的点位置常用的方法

  (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的`位置来确定点的位置。

  (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

  1.A点为原点(0,0),则B点记为(3,1)

  2.以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

  例2是某次海战中敌我双方舰艇对峙,对我方舰艇来说:

  (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

  (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

  (3)要确定每艘敌舰的位置,各需要几个数据?

  [巩固练习]

  1.是某城市市区的一部分,对市政府来说:

  北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

  结合实际问题归纳方法

  学生尝试描述位置

  2. 马所处的位置为(2,3).

  (1) 你能表示出象的位置吗?

  (2) 写出马的下一步可以到达的位置。

  [小结]

  1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

  2. 几种常用的表示点位置的方法.

  [作业]

  必做题:教科书44页:1题

七年级数学下册教案14

  1.2二元一次方程组的解法

  1.2.1代入消元法

  教学目标

  1.了解解方程组的基本思想是消元。

  2.了解代入法是消元的一种方法。

  3.会用代入法解二元一次方程组。

  4.培养思维的灵活性,增强学好数学的信心。

  教学重点

  用代入法解二元一次方程组消元过程。

  教学难点

  灵活消元使计算简便。

  教学过程

  一、引入本课。

  接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

  二、探究。

  比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

  xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的'y就是x5.6,

  可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

  15xy9例1:解方程组 2y3x1

  讨论:怎样消去一个未知数?

  解出本题并检验。

  12x3y0例2:解方程组 25x7y1

  讨论:与例1比较本题中是否有与y3x1类似的方程?

  怎样解本题?

  学生完成解题过程。

  草稿纸上检验所得结果。

  简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

  三、练习

  P27.练习题。

  四、小结

  本节课你有什么收获?

  五、作业

  习题2.2A组第1题。

  后记

七年级数学下册教案15

  教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.

  重点:探索两直线平行的条件

  难点:理解“同位角相等,两条直线平行”

  教学过程

  一、情景导入.

  装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

  要解决这个问题,就要弄清楚平行的判定。

  二、直线平行的条件

  以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?

  三角板经过点P的边与靠在直尺上的边所成的角没有变。

  简化图5.2-5,得图.

  图3

  ∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的`位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

  简单地说:同位角相等,两条直线平行.

  符号语言:∵∠1=∠2∴AB∥CD.

  如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

  用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。

  如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=1800,能得出a∥b吗?

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

  简单地说:内错角相等,两直线平行.

  符号语言:∵∠2=∠3∴a∥b.

  (2)∵∠4+∠2=180°,∠4+∠1=180°(已知)

  ∴∠2=∠1(同角的补角相等)

  ∴a∥b.(同位角相等,两条直线平行)

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.

  简单地说:同旁内角互补,两直线平行.

  符号语言:∵∠4+∠2=180°∴a∥b.

  四、课堂练习

  1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?

  2、课本P162题。

  五、课堂小结:怎样判断两条直线平行?

  六、布置作业::P16、1、2题;P174、5、6。

  平行线,三角板,同位角,数学,教学

【七年级数学下册教案】相关文章:

七年级数学下册教案优秀02-15

小学数学下册教案11-28

七年级数学下册教案(15篇)02-15

七年级数学下册教案15篇01-23

七年级数学下册教案精选15篇02-15

七年级数学下册教案(精选15篇)03-01

七年级数学下册教案(集锦15篇)02-15

七年级数学下册教案(精品15篇)09-28

初二数学下册教案12-12