八年级数学教案(合集15篇)
作为一名教学工作者,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的八年级数学教案,仅供参考,希望能够帮助到大家。
八年级数学教案1
教学目标:
知识目标:
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
能力目标:
1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感目标:
1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:
掌握函数概念。
判断两个变量之间的关系是否可看作函数。
能把实际问题抽象概括为函数问题。
教学难点:
理解函数的概念。
能把实际问题抽象概括为函数问题。
教学过程设计:
一、创设问题情境,导入新课
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
『生』:摩天轮。
『师』:你们坐过吗?
……
『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?
『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。
『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。
大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『师』:对于给定的时间t,相应的高度h确定吗?
『生』:确定。
『师』:在这个问题中,我们研究的对象有几个?分别是什么?
『生』:研究的对象有两个,是时间t和高度h。
『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。
二、新课学习
做一做
(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?
填写下表:
层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?
『生』:变量有两个,是层数与圆圈总数。
(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的`速度(单位:千米/时)
①计算当fenbie为50,60,100时,相应的滑行距离S是多少?
②给定一个V值,你能求出相应的S值吗?
解:略
议一议
『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?
『生』:相同点是:这三个问题中都研究了两个变量。
不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。
『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。
函数的概念
在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
三、随堂练习
书P152页 随堂练习1、2、3
四、本课小结
初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。
在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
函数的三种表达式:
图象;(2)表格;(3)关系式。
五、探究活动
为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?
(答案:Y=1.8x-6或)
六、课后作业
习题6.1
八年级数学教案2
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的.内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
八年级数学教案3
第11章平面直角坐标系
11。1平面上点的坐标
第1课时平面上点的坐标(一)
教学目标
【知识与技能】
1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。
3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】
1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】
通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点
【重点】
认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】
理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程
一、创设情境、导入新知
师:如果让你描述自己在班级中的位置,你会怎么说?
生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知
师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体
的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?
生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?
生:用一个有序的实数对来表示。
师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?
生:可以。
教师在黑板上作图:
我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为
正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。
师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。
学生操作,教师巡视。教师指正学生易犯的错误。
教师边操作边讲解:
如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。
教师多媒体出示:
师:如图,请同学们写出A、B、C、D这四点的坐标。
生甲:A点的坐标是(—5,4)。
生乙:B点的坐标是(—3,—2)。
生丙:C点的坐标是(4,0)。
生丁:D点的坐标是(0,—6)。
师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?
教师边操作边讲解:
在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。
学生动手作图,教师巡视指导。
三、深入探究,层层推进
师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?
生:都一样。
师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?
生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的`坐标的符号为(+,—)。
师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?
生:能,在第二象限。
四、练习新知
师:现在我给出几个点,你们判断一下它们分别在哪个象限。
教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A点在第三象限。
生乙:B点在第四象限。
生丙:C点不属于任何一个象限,它在y轴上。
生丁:D点不属于任何一个象限,它在x轴上。
师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。
学生作图,教师巡视,并予以指导。
五、课堂小结
师:本节课你学到了哪些新的知识?
生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。
教师补充完善。
教学反思
物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。
第2课时平面上点的坐标(二)
教学目标
【知识与技能】
进一步学习和应用平面直角坐标系,认识坐标系中的图形。
【过程与方法】
通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。
【情感、态度与价值观】
培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。
重点难点
【重点】
理解平面上的点连接成的图形,计算围成的图形的面积。
【难点】
不规则图形面积的求法。
教学过程
一、创设情境,导入新知
师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。
学生作图。
教师边操作边讲解:
二、合作探究,获取新知
师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?
生甲:三角形。
生乙:直角三角形。
师:你能计算出它的面积吗?
生:能。
教师挑一名学生:你是怎样算的呢?
生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。
师:很好!
教师边操作边讲解:
大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么
图形?
学生完成操作后回答:平行四边形。
师:你能计算它的面积吗?
生:能。
教师挑一名学生:你是怎么计算的呢?
生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:
教师多媒体出示下图:
八年级数学教案4
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的`和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 教学建议 知识结构 重难点分析 本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路. 本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度. 教法建议 1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用 2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解 教学设计示例 一、教学目标 1.掌握中位线的概念和三角形中位线定理 2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边” 3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力 4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力 5. 通过一题多解,培养学生对数学的兴趣 二、教学设计 画图测量,猜想讨论,启发引导. 三、重点、难点 1.教学重点:三角形中位线的概论与三角形中位线性质. 2.教学难点:三角形中位线定理的证明. 四、课时安排 1课时 五、教具学具准备 投影仪、胶片、常用画图工具 六、教学步骤 【复习提问】 1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明). 2.说明定理的证明思路. 3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ? 分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出. 4.什么叫三角形中线?(以上复习用投影仪打出) 【引入新课】 1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线. (结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线) 2.三角形中位线性质 了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质. 如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理. 三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半. 应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的.结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明. 由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示). (l)延长DE到F,使 ,连结CF,由 可得AD FC. (2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC. (3)过点C作 ,与DE延长线交于F,通过证 可得AD FC. 上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE . (证明过程略) 例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形. (由学生根据命题,说出已知、求证) 已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形.‘ 分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形. 证明:连结AC. ∴ (三角形中位线定理). 同理, ∴GH EF ∴四边形EFGH是平行四边形. 【小结】 1.三角形中位线及三角形中位线与三角形中线的区别. 2.三角形中位线定理及证明思路. 七、布置作业 教材P188中1(2)、4、7 一、教学目的 1.使学生进一步理解自变量的取值范围和函数值的意义. 2.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:1.理解与认识函数图象的意义. 2.培养学生的看图、识图能力. 难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题. 三、教学过程 复习提问 1.函数有哪三种表示法?(答:解析法、列表法、图象法.) 2.结合函数y=x的图象,说明什么是函数的图象? 3.说出下列各点所在象限或坐标轴: 新课 1.画函数图象的方法是描点法.其步骤: (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了. 一般地,我们把自变量与函数的对应值分别作为点的'横坐标和纵坐标,这就要把自变量与函数的对应值列出表来. (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点. (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线. 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线). 2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象. 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图. 练习 ①选用课本练习(前一节已作:列表、描点,本节要求连线) ②补充题:画出函数y=5x-2的图象. 作业 选用课本习题. 四、教学注意问题 1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征. 2.注意充分调动学生自己动手画图的积极性. 3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力. ●教学目标 (一)教学知识点 1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似. 2.能根据相似比进行计 算. (二)能力训练要求 1.能根据定义判断两个三角形是否相似,训练 学生的判断能力. 2.能根据相似比求长度和角度,培养学生的运用能力. (三)情感与价值观要求 通过与相似多边形有关概念的类比,渗透类比的'教学思想,并领会特殊与一般的关系. ●教学重点 相似三角形的定义及运用. ●教学难点 根据定义求线段长或角的度数. ●教学过程 Ⅰ.创设问题情境,引入新课 今天, 我们就来研究相似三角形. Ⅱ.新课讲解 1.相似三角形的定义及记法 三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF 其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比. 2.想一想 如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢? 所以 D、E、F. . 3.议一议,学生讨论 (1)两个全等三角形一定相似吗?为什么? (2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么? (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么? 结论:两 个全等三角形一定相似. 两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似. 4.例题 例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度. 例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45, ACB=40,求(1)AED和ADE的度数。(2)DE的长. 5.想一想 在例2的条件下,图中有哪些线段成比例? Ⅲ.课堂练习 P129 Ⅳ.课时小结 相似三角形的 判定方法定义法. Ⅴ.课后作业 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线. 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力. 3、情感目标: (1)在公理的形成过程中渗透:实验、观察、归纳; (2)通过变式训练,培养学生“举一反三”的学习习惯. 教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。 教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。 教学用具:直尺,微机 教学方法:自学辅导 教学过程: 1、新课引入 投影显示 问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗? 这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。 2、公理的获得 问:通过上面问题的分析,满足什么条件的两个三角形全等? 让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法) 公理:有三边对应相等的两个三角形全等。 应用格式: (略) 强调说明: (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。 (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边) (3)、此公理与前面学过的公理区别与联系 (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。 (5)说明AAA与SSA不能判定三角形全等。 3、公理的应用 (1) 讲解例1。学生分析完成,教师注重完成后的点评。 例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架 求证:AD⊥BC 分析:(设问程序) (1)要证AD⊥BC只要证什么? (2)要证∠1= 只要证什么? (3)要证∠1=∠2只要证什么? (4)△ABD和△ACD全等的条件具备吗?依据是什么? 证明:(略) (2)讲解例2(投影例2 ) 例2已知:如图AB=DC,AD=BC 求证:∠A=∠C (1)学生思考、分析、讨论,教师巡视,适当参与讨论。 (2)找学生代表口述证明思路。 思路1:连接BD(如图) 证△ABD≌△CDB(SSS)先得∠A=∠C 思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。 例3如图,已知AB=AC,DB=DC (1)若E、F、G、H分别是各边的'中点,求证:EH=FG (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。 学生思考、分析,适当点拨,找学生代表口述证明思路 让学生在练习本上写出证明,然后选择投影显示。 证明:(略) 说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。 例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线, 求证:AC=2AE. 证明:(略) 学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。 5、课堂小结: (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS) 在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。 (2)三种方法的综合运用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。 6、布置作业: a、书面作业P70#11、12 b、上交作业P70#14 P71B组3 教学目标 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题 教学重点:平行四边形的判定方法及应用 教学难点:平行四边形的'判定定理与性质定理的灵活应用 一.引 小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗? 二.探 阅读教材P44至P45 利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨: (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗? (2)你怎样验证你搭建的四边形一定是平行四边形? (3)你能说出你的做法及其道理吗? (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗? (5)你还能找出其他方法吗? 从探究中得到: 平行四边形判定方法1两组对边分别相等的四边形是平行四边形。 平行四边形判定方法2对角线互相平分的四边形是平行四边形。 证一证 平行四边形判定方法1两组对边分别相等的四边形是平行四边形。 证明:(画出图形) 平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。 一、内容和内容解析 1.内容 三角形中相关元素的概念、按边分类及三角形的三边关系. 2.内容解析 三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解. 本节课的教学重点:三角形中的相关概念和三角形三边关系. 本节课的教学难点:三角形的三边关系. 二、目标和目标解析 1.教学目标 (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素. (2)理解并且灵活应用三角形三边关系. 2.教学目标解析 (1)结合具体图形,识三角形的概念及其基本元素. (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类. (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题. 三、教学问题诊断分析 在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神. 四、教学过程设计 1.创设情境,提出问题 问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义. 师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解. 【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解. 2.抽象概括,形成概念 动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义. 师生活动: 三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的'图形叫做三角形. 【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力. 补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法. 师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡. 【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用. 3.概念辨析,应用巩固 如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来. 1.以AB为一边的三角形有哪些? 2.以∠D为一个内角的三角形有哪些? 3.以E为一个顶点的三角形有哪些? 4.说出ΔBCD的三个角. 师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解. 4.拓广延伸,探究分类 我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法. 师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解. 一、学习目标 1.多项式除以单项式的运算法则及其应用。 2.多项式除以单项式的运算算理。 二、重点难点 重点:多项式除以单项式的运算法则及其应用。 难点:探索多项式与单项式相除的运算法则的过程。 三、合作学习 (一)回顾单项式除以单项式法则 (二)学生动手,探究新课 1.计算下列各式: (1)(am+bm)÷m; (2)(a2+ab)÷a; (3)(4x2y+2xy2)÷2xy。 2.提问: ①说说你是怎样计算的; ②还有什么发现吗? (三)总结法则 1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的`商XXXXXX 2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX 四、精讲精练 例:(1)(12a3—6a2+3a)÷3a; (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y); (3)[(x+y)2—y(2x+y)—8x]÷2x; (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。 随堂练习:教科书练习。 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号; B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行; E、多项式除以单项式法则。 一、学习目标及重、难点: 1、了解方差的定义和计算公式。 2、理解方差概念的产生和形成的过程。 3、会用方差计算公式来比较两组数据的波动大小。 重点:方差产生的必要性和应用方差公式解决实际问题。 难点:理解方差公式 二、自主学习: (一)知识我先懂: 方差:设有n个数据 ,各数据与它们的平均数的差的`平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 给力小贴士:方差越小说明这组数据越 。波动性越 。 (二)自主检测小练习: 1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。 2、甲、乙两组数据如下: 甲组:10 9 11 8 12 13 10 7; 乙组:7 8 9 10 11 12 11 12. 分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小. 三、新课讲解: 引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、 10、13、7、13、10、8、11、8; 乙:8、13、12、11、10、12、7、7、10、10; 问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = ) (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 ) 归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 (一)例题讲解: 例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、 测试次数 第1次 第2次 第3次 第4次 第5次 段巍 13 14 13 12 13 金志强 10 13 16 14 12 给力提示:先求平均数,在利用公式求解方差。 (二)小试身手 1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定 去参加比赛。 1、求下列数据的众数: (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2 2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少? 四、课堂小结 方差公式: 给力提示:方差越小说明这组数据越 。波动性越 。 每课一首诗:求方差,有公式;先平均,再求差; 求平方,再平均;所得数,是方差。 五、课堂检测: 1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒) 小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9 小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8 如果根据这几次成绩选拔一人参加比赛,你会选谁呢? 六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题 七、学习小札记: 写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐! 一、素质教育目标 (一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联系. 3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理. (二)能力训练点 1.通过“探索式试明法”开拓学生思路,发展学生思维能力. 2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的'能力. (三)德育渗透点 通过一题多解激发学生的学习兴趣. (四)美育渗透点 通过学习,体会几何证明的方法美. 二、学法引导 构造逆命题,分析探索证明,启发讲解. 三、重点·难点·疑点及解决办法 1.教学重点:平行四边形的判定定理1、2、3的应用. 2.教学难点:综合应用判定定理和性质定理. 3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理 (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理). 一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 1.平移 2.平移的性质: ⑴经过平移,对应点所连的线段平行且相等; ⑵对应线段平行且相等,对应角相等。 ⑶平移不改变图形的大小和形状(只改变图形的位置)。 (4)平移后的图形与原图形全等。 3.简单的平移作图 ①确定个图形平移后的位置的条件: ⑴需要原图形的位置; ⑵需要平移的方向; ⑶需要平移的.距离或一个对应点的位置。 ②作平移后的图形的方法: ⑴找出关键点;⑵作出这些点平移后的对应点; ⑶将所作的对应点按原来方式顺次连接,所得的; 二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。 1.旋转 2.旋转的性质 ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。 ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。 ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。 ⑷旋转前后的两个图形全等。 3.简单的旋转作图 ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。 ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。 ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。 三、分析组合图案的形成 ①确定组合图案中的“基本图案” ②发现该图案各组成部分之间的内在联系 ③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合; ⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。 平方差公式 学习目标: 1、能推导平方差公式,并会用几何图形解释公式; 2、能用平方差公式进行熟练地计算; 3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律. 学习重难点: 重点:能用平方差公式进行熟练地计算; 难点:探索平方差公式,并用几何图形解释公式. 学习过程: 一、自主探索 1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现. 3、你能用自己的语言叙述你的发现吗? 4、平方差公式的特征: (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。 (2)、公式中的a与b可以是数,也可以换成一个代数式。 二 、试一试 例1、利用平方差公式计算 (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 例2、利用平方差公式计算 (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2 三、合作交流 如图,边长为a的大正方形中有一个边长为b的小正方形. (1)请表示图中阴影部分的面积. (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b (3)比较(1)(2)的结果,你能验证平方差公式吗? 四、巩固练习 1、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3) 2、利用平方差公式计算 (1)803797 (2)398402 3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以 4.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.( a+b)(b- a) D.(a2-b)(b2+a) 5.下列计算中,错误的`有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM] 6.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 7.(-2x+y)(-2x-y)=______. 8.(-3x2+2y2)(______)=9x4-4y4. 9.(a+b-1)(a-b+1)=(_____)2-(_____)2. 10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 11.利用平方差公式计算:20 19 . 12.计算:(a+2)(a2+4)(a4+16)(a-2). 五、学习反思 我的收获: 我的疑惑: 六、当堂测试 1、下列多项式乘法中能用平方差公式计算的是( ). (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[ 2、填空:(1)(x2-2)(x2+2)= (2)(5x-3y)( )=25x2-9y2 3、计算: (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4) 4.利用平方差公式计算 ①1003997 ②14 15 七、课外拓展 下列各式哪些能用平方差公式计算?怎样用? 1) (a-b+c)(a-b-c) 2) (a+2b-3)(a-2b+3) 3) (2x+y-z+5)(2x-y+z+5) 4) (a-b+c-d)(-a-b-c-d) 2.2完全平方公式(1) 【八年级数学教案】相关文章: 八年级数学教案12-26 八年级上册数学教案12-23 【精】八年级数学教案01-08 八年级数学教案【热】01-08 【热】八年级数学教案01-08 八年级数学教案【热门】01-08 八年级数学教案【荐】01-08 八年级数学教案【精】01-08 【热门】八年级数学教案01-08 八年级数学教案【推荐】01-08八年级数学教案5
八年级数学教案6
八年级数学教案7
八年级数学教案8
八年级数学教案9
八年级数学教案10
八年级数学教案11
八年级数学教案12
八年级数学教案13
八年级数学教案14
八年级数学教案15