六年级北师大数学下册教案

时间:2023-01-03 10:20:50 教案 我要投稿
  • 相关推荐

六年级北师大数学下册教案(15篇)

  在教学工作者开展教学活动前,往往需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?下面是小编为大家整理的六年级北师大数学下册教案,欢迎阅读,希望大家能够喜欢。

六年级北师大数学下册教案(15篇)

六年级北师大数学下册教案1

  教学内容:

  教材第4~5页例2、例3和练一练及练习一。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:

  教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:

  掌握圆柱侧面积的计算方法。

  教学难点:

  能根据实际情况正确地进行计算。

  教学过程:

  一、铺垫孕伏:

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二、自主研究:

  1.认识表面积计算方法。

  (1) 请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的`表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

  5.组织练习。

  (1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

六年级北师大数学下册教案2

  学习目标:

  1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的.图形。

  2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

  学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

  学习难点:在方格纸上画出线段旋转90度后的图形

  课前准备:钟表,课件,教具

  学习过程

  环节学案

  回顾旧知

  1、物体的运动有( )和( )。

  2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。

  自主探索

  1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。

  2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

  3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

  4、旋转三要素指( )( )( )。

  合作探究

  当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

  达标检测

  基础性作业:

  课本29页练一练1、2题(看课件)。

  一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

  提高性作业:

  1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

  拓展性作业:

  如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

六年级北师大数学下册教案3

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  1.情境(一)

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  2.情境(二)

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  3.情境(三)

  把杯数和每杯果汁量的'表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

六年级北师大数学下册教案4

  教学过程:

  一、引入变量的概念

  师:老师买了10个苹果,吃了2个,还剩?个吃了4个,还剩?个吃了7个,还剩?个

  问:在老师刚才叙述的吃苹果这件事中有几个量?其中哪些量是变化的?怎样变化?

  (有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)

  师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。

  二、新授

  师:好,下面我们一起看书P18。

  1. 看第一个例子,说说这个统计表的内容是什么?

  (是小明体重变化的情况)

年龄出生时6个月1周岁2周岁6周岁10周岁
体重/千克3.57.010.514.021.031.5

  问:表中的哪些量在发生变化?

  年龄在变,体重也在发生变化:年龄增加,体重也在增加。

  问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)

  2. 看第二个例子。骆驼被称为沙漠之舟,这就是反映骆驼体温随时间的变化而变化的图象。请你认真观察图象,图象中反映了哪些变量之间的关系?

  (时间、体温)

  指导学生读懂图意:

  (1) 一天中,骆驼体温最高是多少?(400C)最低是多少?(350C)

  (2) 一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)

  师:骆驼的体温是随时间而呈周期性的变化。

  (3) 第二天8时骆驼的体温与前一天8时的体温有什么关系?

  师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。

  3. 看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。

  问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?

  h=t7+3

  三、引导学生举出生活中一个量随另一个量变化的例子。

  如:一天的'气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。

  问:你能举出生活中一个量随另一个量变化的例子吗?

  (学生举例,只要合理,老师就要给予肯定。)

  四、课堂小结。

  同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。

六年级北师大数学下册教案5

  教学内容:

  教科书8788页。

  教学目标:

  1、知识技能:探求给定的事物中隐含的规律或变化趋势。

  2、数学思考与解决问题: 体会解决问题的基本过程和方法,提高解决问题的能力。

  3、情感态度:探索数与数之间、图形与图形之间的规律

  教学重点 :

  探索规律的方法

  教学难点:

  如何将规律字母化,也就是如何用字母的式子表示规律。

  教具准备:

  一张很长的纸条和一根绳子

  教法学法:

  自主学习、小组合作、讲解法、讨论法

  教学过程:

  一、情景创设,导入复习

  师:说一说我们生活中存在着哪些数学规律?

  二、回顾整理,建构网络

  1、出示乘法表

  师:我们的乘法表中也有很多的'规律,先请你们填完这个乘法表,

  你们会填吗?(师指导怎样填),生做在书66页上

  填表完后仔细观察,看看你能发现哪些有趣的规律?和同学说说汇报展示

  2、找规律,填一填。

  师:比一比看谁在两分钟内做得最多?

  (1) 2,4,6,8, _____,12, 14,

  (2) 1,3,5,7, _____,11,

  (3) 8,11,14,17,_____,23,26,

  (4) 1,8,27,64, _____,216,

  (5) 1,4,9,16,25, _____,49,

  (6) 3,6,9,12,_____, 18,21,

  (7) 1,3,6,10,15,_____,28,

  (8) 6, 1, 8, 3, 10, 5, 12, 7, ( ) , ( ),

  学生在回答问题时,要说明填的理由和依据。

  师:填什么数?为什么?

  师:象这样的数列你认为一般有哪些规律?

  三、重点复习,强化提高

  展示生活中数学规律,与同学分享(课件)

  师:如果不是数列而是图形你还会观察它们的排列规律吗?

  1、六(2)班同学在六一国际儿童节按下面的规律在教室里挂上气球。

  第20个汽球是什么颜色的?第48个呢?

六年级北师大数学下册教案6

  教学目标:

  通过数学学习活动,使学生学会运用数学的思维方式支解决日常生活中的一些问题,增强应用数学的意识,发展学生的实践能力和创新精神。

  重点难点:

  知道如何寄信最经济 设计邮票的价值

  教具学具:

  各类邮票的图片资料

  教学过程:

  一、复习回顾,揭示课题

  1. 观察邮票。

  实物投影出示课文中的邮票。

  问:你寄过信吗?见过这些邮票吗?

  2. 说一说。

  (1) 上面这些都是普通邮票,你还见过哪些邮票?

  (2) 你知道它们各有什么作用吗?

  交流后,使学生明白普通邮票票面值种类齐全,可适用于各种邮政业务。

  3. 揭示课题。

  师:今天,我们就一起来探究邮票中的数学问题。

  板书课题:邮票中的数学问题。

  二、新知学习,组织活动

  1. 出示邮政相关的费用。

  业务种类 计费

  单位 资费标准/元

  本埠资费 外埠资费

  信函 首重100g内,每重20g

  (不足20 g按20 g计算) 0.80 1.20

  续重101~20xx g每重100 g

  (不足100 g按100 g计算) 1.20 2.00

  问:从表中你得到哪些信息?

  如

  (1) 不到20 g的信函,寄给本埠的朋友只要贴0.80元的邮票。

  (2) 不到20 g的信函,寄给外埠的朋友要贴1.20元的邮票。

  2. 一封45g的信,寄往外地,怎样贴邮票?

  (1) 学生观察表中数据,计算出所需邮资。

  (2) 说一说你是怎么算的。

  想:每重20g,邮资1.20元,40 g的信函,邮资是2.40元。不足20 g按20 g计算,所以45 g的信函,寄往外地所需邮资是3.60元。

  3. 如果邮寄不超过100g的信函,最多只能贴3张邮票,只用80分和1.2元的邮票能满足需要吗?如果不能,请你再设计一张邮票,看看多少面值的邮票能满足需要。

  (1) 不超过100g的`信函,需要多少资费?

  ①学生说一说各种可能的资费。

  ②引导列表描述。

  1~20、21~40、41~60、61~80、81~100

  本埠

  外埠

  (2) 只用80分和1.2元两种面值可支付的资费是多少?

  一张:80分 1.2元

  两张:80分2=1.6元 1.22=2.4元 0.8+1.2=2.0元

  三张:0.83=2.4元

  1.23=3.6元

  0.82+1.2=2.8元

  1.22+0.8=3.2元

  (3) 你认为可以设计一张多少面值的邮票?

  ①学生自行设计各种面值的邮票。

  ②看看多少面值的邮票能满足需要。

  4. 如果想最多只用4种面值的邮票,就能支付所有不超过400g的信函的资费,除了80分和1.2元两种面值,你认为还需要增加什么面值的邮票?

  (1) 先看看从101~400g的信函,有哪些可能的资费。

  101~200、201~300、301~400

  本埠

  外埠

  (2) 你想设计什么面值的邮票?

  ① 自行设计。

  ② 与同学交流。

  (3) 你见到你设计的这种面值的邮票吗?

  三、巩固提高

  小结 邮票是有益的爱好,可以扩展我们的视野,培养高尚的情操。

六年级北师大数学下册教案7

  设计说明

  “反比例”是在学生学过“变化的量”“正比例”“正比例图象(画一画)”的基础上进行教学的。本着“学生是学习的主体”这一理念,本节课在教学中最大限度地为学生提供了自主探究的机会。

  1.借助意义、实例,渗透思想。

  教学伊始,借助正比例的意义和生活实例,使学生体会函数思想,充分理解正比例比值不变的特点,为学生探究成反比例的两个量之间的关系,理解、掌握反比例的意义及特点奠定良好的基础。

  2.借助教材情境,在观察、讨论中发现规律。

  教学中,先根据教材提供的情境,理解长方形的面积一定时,长方形相邻两边的边长成反比例关系,再结合王叔叔游长城这一情境,引导学生在观察、讨论中发现速度和时间这两个量之间的关系:速度变化,所用的时间也随着变化,速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。学生通过自己的努力,了解反比例的意义,理解反比例的特点。

  教学目标:

  1、通过观察、操作和比较,让学生认识反比例的意义,理解、掌握反比例的变化规律及其特征,能依据反比例的意义判断两种相关联的量成不成反比例。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  3、培养学生的分析、推测能力,并向学生渗透初步的函数思想。

  教学重难点

  教学重点:理解反比例的意义。

  教学难点:掌握判断两种量是否成反比例的方法。

  课前准备 教师准备 多媒体课件 教学过程 :

  一、复习旧知,引入新课

  二、复习提问。

  1、什么是正比例? 两个相关联的量,一个量变化,另一个量也随着变化,如果这两个量中相对应的两个数的比值一定,这两个量就叫作成正比例的量,它们的关系叫做正比例关系。

  2、判断下面各题中的两个量是否成正比例?

  ①工作效率一定,工作时间和工作总量。

  ②每头奶牛的产奶量一定,奶牛的.头数和总产奶量。

  ③正方形的边长和它的面积。

  3、引入新课。

  师:通过学习我们已经知道了两个量成正比例关系的变化规律。正和反相对,有正比例,那是否有反比例呢?如果有,什么样的两个量成反比例关系呢?又该如何判断呢?今天这节课我们就一起来研究两个量成反比例关系的变化规律。

  (设计意图:通过复习正比例的意义,判断两个量是否成正比例,检验学生掌握知识的能力,为学习新课奠定基础。) 二、合作交流,探究新知 1、探究长方形相邻两边边长的变化规律。

  (1) 课件出示教材46页表1和表2。

  用x,y表示长方形相邻两边的边长,表1是面积为24 平方厘米的长方形相邻两边边长的变化关系,表2是周长为24 厘米的长方形相邻两边边长的变化关系。请把表格填写完整,并说说你发现了什么。(单位:厘米)生独立填表。

  (2) 汇报发现。

  (长方形一条边的边长随着邻边边长的增加而减少)

  (3) 讨论:表1和表2中,长方形相邻两边边长之间的变化规律相同吗? (小组内讨论、交流后汇报)

  小结:面积是24 平方厘米的长方形相邻两边边长之间的关系:1×24=2×12=3×8=4×6=…相邻两边边长的积都是24。

  生2:周长是24 厘米的长方形相邻两边边长之间的关系:1×11=11,2×10=20,3×9=27…相邻两边边长的积不相等。1+11=2+10=3+9=…虽然相邻两边边长的积不相等,但相邻两边边长的和相等。

  2、探究速度与时间的变化规律。

  (1) 课件出示教材46页下面例题。

  结合“王叔叔要去游长城”的情境,初步感受成反比例的量之间的关系。

  王叔叔要去游长城,不同的交通工具的速度和行驶所需时间如下,请把下表填完整。

  引导学生独立计算、填表。(根据速度和时间求路程) 从上表中你发现了什么? 生1:我发现时间与速度的变化有关系。

  生2:我发现速度增加,时间减少;

  速度减少,时间增加。

  生3:我发现速度与时间的积是一定的,10×12=60×2=80×1.5=120,积都是120,即“速度×时间=路程(一定)”。

  师总结:像这样,速度和时间两个量,速度变化,所用的时间也随着变化,而且速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。

  想一想:第1个问题中,表1和表2中的长方形相邻两边的边长成反比例吗? 生独立思考后汇报。

  当面积一定时,长方形相邻两边边长的积一定,所以相邻两边的边长成反比例。

  当周长一定时,长方形相邻两边边长的和一定,但是积不相等,所以相邻两边的边长不成反比例。

  3、在知识迁移中总结用字母表示反比例的方法。

  师:结合正比例关系的字母表达式想一想:反比例关系怎样用字母表示?

  生:如果用x和y表示两个相关联的量,用k(一定)表示它们的积,反比例关系可以用下面的公式表示:

  x×y=k(一定)(板书公式并强调积一定)

  4、在对比学习中,明确正比例与反比例的异同。

  (1)正比例与反比例有什么相同点和不同点?学生交流并完成手中表格 相同点是都表示两个相关联的量,且一个量变化,另一个量也随着变化。

  不同点是正比例关系中两个相关联的量的比值一定,反比例关系中两个相关联的量的积一定。

  (2)你还能列举出哪些日常生活中的反比例?(学生自主举例,合理即可)

  设计意图:结合新知内容,循序渐进,层层深入。让学生带着问题进入新课,并结合具体情境及教材内容引导学生逐步理解成反比例的量、反比例的意义和特点及正、反比例的区别,使学生的观察能力、发现能力、知识归纳能力、表达能力以及合作意识得到提高。

  三、巩固练习,拓展应用

  1、完成教材48页“练一练”1题。(生独立完成,借助表中数据说明即可。师巡视指导)

  设计意图:训练学生独立完成习题的能力,在判断题的基础上增加难度,注重练习题的梯度性,使学生的数学思维得到更好的发展。

  2、工作效率、工作总量和工作时间这三种量中,在什么情况下,哪两种量成反比例?在什么情况下哪两种量成正比例?

  3、判断下面各题中的两个量是否成反比例,并说明理由。

  (1)(行驶的路程一定,车轮的周长与车轮需要转动的圈数。

  (2)平行四边形的面积一定,它的底和高。

  (3)笑笑从家步行到学校,已走的路程和剩下的路程。

  (4)周长一定时,圆的直径和圆周率。

  四、课堂总结

  1、这节课你学到了哪些知识?还有哪些不懂的地方?

  2、正比例与反比例有什么区别?(引导学生从意义、表达式等方面进行汇报)

  五、布置作业

  请同学们利用手中的表格试着画一画反比例的图象。

  板书设计 :

  反比例 速度×时间=路程(一定) 表达式:x×y=k(一定) 反比例的特征:

  1、两种相关联的量

  2、一种量变化,另一种量也随着变化

  3、积一定速度变化,所用的时间也随着变化,

六年级北师大数学下册教案8

  教学目标:

  1、在具体情境中,通过画一画的活动,初步认识正比例图象。

  2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  3、利用正比例关系,解决生活中的一些简单问题。

  教学重点:

  会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。

  教学难点:

  利用正比例关系,解决生活中的一些简单问题。

  教学准备:

  多媒体课件

  教学过程:

  一、复习

  师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。首先,请同学们回忆一下,正比例要满足哪两个条件?

  生:要满足两个条件:1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;2、两种量相对应的比值不变。

  师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?

  生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。

  师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)

  (设计意图:复习上节课正比例的有关知识,导入本课。)

  二、动手画图,理解含义。

  填表,说一说表中两个量的关系。

  一个数 0 1 2 3 4 5 6 7 8 9 10

  这个数的5倍

  (1)学生填表。

  (2)学生汇报。

  (3)谁能说一说这两个量的关系。

  这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。

  (设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)

  三、试一试

  1、在下图中描点,表示第20页两个表格中的数量关系。

  2、思考:连接各点,你发现了什么?

  生:所有的`点在都在同一条直线上。

  (设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)

  四、练一练

  1、圆的半径和面积成正比例关系吗?为什么?

  师:因为圆的面积和半径的比值不是一个常数。

  师:请同学们观察课本上的图,看一看不成正比例的两个量所形成的的图形是不是一条直线?

  (设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)

  2、乘船的人数与所付船费为:(数据见书上)

  (1)将书上的图补充完整。

  (2)说说哪个量没有变?

  (3)乘船人数与船费有什么关系?

  (4)连接各点,你发现了什么?

  3、回答下列问题

  (1)圆的周长与直径成正比例吗?为什么?

  (2)根据右图,先估计圆的周长,再实际计算。

  (3)直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

  (4)直径为15厘米的圆的周长估计值为( ),实际计算值为( )。

  4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)

  (设计意图:通过以上练习,巩固所学。)

六年级北师大数学下册教案9

  教学内容:

  北师大版小学数学六年级下册总复习中第78-79页的内容

  教学目标:

  知识与能力:

  1、进一步认识图形的平移,旋转与轴对称。

  2、能确定轴对称图形的对称轴,能在方格纸上画出一个图形的轴对称图形,能将简单的图形平移或旋转90°。

  过程与方法:

  整理已学过的平面图形的轴对称性,加深对这些图形的认识。

  灵活运用平移,旋转和轴对称在方格纸上设计图案。

  情感态度与价值观:

  在观察、操作、想象、设计图案等活动中,发展空间观念。

  教学重点:

  进一步掌握对称、平移、旋转的特征。

  教学难点:

  综合运用平移、旋转与对称的特征进行图形的'变换,进一步发展学生空间观念。

  教学过程:

  一、创设情境,引入课题

  师:同学们,上周末咱们班的李坤和王明随爸爸、妈妈一起去了一个地方。想跟他们一起去看看吗?

  (课件出现游乐场情景:摩天轮、穿梭机、旋转木马、滑滑梯、推车、小火车、速滑)

  师:游乐园里各种游乐项目的运动变化相同吗?(学生说分类方法)

  生1:在游乐园里像滑滑梯、推车、小火车、速滑这些物体都是沿直线移动,这样的现象叫做平移。生2:摩天轮、穿梭机、旋转木马这些物体都绕着一个点或一个轴移动,这样的现象叫做旋转。

  师:平移和旋转是我们常见的物体的运动方式,数学上我们称为变换方式,除了这两种方式,还有哪种方式可以称为变换呢?

  生:轴对称。

  师:我们今天就一起来复习图形与变换的知识。(板书课题)

六年级北师大数学下册教案10

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:

  认识反比例关系的意义。

  教学难点:

  掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例1。

  出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨) 10 20 30 40 50

  所需的天数 30 15 10 7.5

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答 讨论结果得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例2

  出示例2

  请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的`?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3) 判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。

六年级北师大数学下册教案11

  教学内容:

  本内容是六年级下册第8页至第9页。

  教材分析:

  本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

  学生分析:

  学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

  学习目标:

  1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

  2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

  3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

  教学过程:

  出示教学情境:一个杯子能装多少水呢?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

  (设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

  出示第二情境:圆柱形的`木柱子的体积是多少?用这种方法还行吗?怎么办?

  (设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

  探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

  大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

  验证:能否将圆柱转化为学过的立体图形?

  让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

  思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

  (设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

  用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

  学生讨论交流:

  1、把圆柱拼成长方体后,什么变了,什么没变?

  2、拼成的长方体与圆柱之间有什么联系?

  3、通过观察得到什么结论?

  得到:圆柱的体积=底面积×高

  V=Sh=πr2h

  (设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

  练习设计:

  1、计算下面各圆柱的体积。

  (1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

  2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?

  (设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

  3、试一试:

  (1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

  (2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的体积是多少?

  (设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

  4、拓展练习:

  (1)填表:

  填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

  (设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

  (2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

  (设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

  课堂小结:谈谈这节课你有哪些收获?

  (设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

  教学反思:

  本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

  情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

六年级北师大数学下册教案12

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的`体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

六年级北师大数学下册教案13

  教学内容:

  北师大版六年级数学下册93页95页的内容。

  教学目标:

  1.进一步理解周长、面积、体积等以及相应的单位;

  2.沟通几种基本图形面积公式及其推导过程的内在联系,体积计算公式之间的联系,数学知识方法的内在联系,体会转化、类比等数学思想方法,发展初步的推理能力;

  3.能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积,并解决一些简单的实际问题;

  4.能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。

  教学重点:

  能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积

  教学难点:

  能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的'实际问题。

  教学过程:

  一、提出问题

  平面图形和立体图形在生活中应用得非常广泛,有时我们要计算它们的面积,体积等,这就需要我们了解一些数据,运用到关于测量的知识,这节课我们就一起来复习图形与测量。(板书课题)

  二、回顾整理,建构网络

  1.长度、面积和体积的认识

  (1)我们学校的综合楼准备粉刷和装修,工人叔叔正准备做一些数据的测量,我们也参与到他们中间去,好吗?

  (2)大家先想一想,测量哪些地方,会用到什么单位?

  问:什么是长度?什么是面积?什么是体积?

  2.测量单位及进率

  (1)我们知道测量除了数据之外还需要什么呢?现在请同学们回忆一下长度、面积和体积各自的单位,并说出它们之间的进率。

  (2)说一说

  请大家说一说1米、1分米、1厘米分别有多长,1平方米、1平方分米、1平方厘米、1立方米、1升、1毫升分别有多大?

  3.前面我们已经分类复习了平面图形的周长与面积,立体图形的表面积与体积,你最感兴趣的是哪一部分,把它整理出来。

  4.汇报交流。交流时要说出每类知识点要注意的问题。

  三、重点复习,强化提高

  你认为最容易出错的是哪部分内容?有什么好办法避免出错?

六年级北师大数学下册教案14

  一、学习内容:

  教师提供 小学数学六年级下册14页----17页。

  二、学生提供:

  等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

  三、学习目标:

  1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

  2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

  四、重点难点:

  重点:圆锥的体积计算。

  难点圆锥的体积公式推导。

  关键:圆锥的体积是与它等底等高的`圆柱体积的三分之一。

  五、学习准备:

  等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

  看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

  长方形的长等于三角形的底,长方形的宽等于三角形的高。

  你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

  三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

  六、布置课前预习

  点拨自学

  1、圆柱和圆锥有哪些相同的地方?

  2、圆柱和圆锥有哪些不同的地方?

  3、圆锥的体积和圆柱的体积有什么关系呢?

  请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

  七、交流解惑:

  它们的底面积相等,高也相等

  圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

  动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

  通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流

  组际解疑

  老师点拨

  八、合作考试

  1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

  2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底

  面半径约3分米,高约2.7分米,求沙堆的体积。

  (只列式不计算)

  3、在打谷场上,有一个近似于圆锥的小麦堆,测

  底面直径是4米,高是1.2米。每立方米小麦约

  重735千克,这堆小麦大约有多少千克?

  (只列式不计算)

  4、如图,求这枝大笔的体积。

  (单位:厘米)

  (只列式不计算)

  5、将一个底面半径是2分米,高是4分米的圆柱

  形木块,削成一个最大的圆锥,那么削去的体积

  是多少立方分米?(口算)

  九、自我总结:

  通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。

  十、教学反思:

  本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

六年级北师大数学下册教案15

  教学目标:

  1.通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

  2.通过图形的放缩,结合具体情境,感受图形的.相似。

  教学重点:

  图形的缩小与放大。

  教学难点:

  图形放缩的原理。

  教学过程:

  一、 揭示课题

  1.谈话引入:小红一家外出旅游,照了许多照片,小红把几张照片放大后,挂在家里,把几张照片缩小后,放在夹子里。你知道相片放大缩小的原理吗:

  2.板书课题:图形的放缩。

  二、 探索新知

  1.教学例题

  (1)出示例题。

  ①认真观察图形。

  ②说一说:谁画得像?

  ③你是怎么想的?说出你的思维过程。

  ④教师引导学生得出正确的看法:笑笑和淘气画得最象。

  (2)讨论:

  师:你知道他们是怎样画的?

  ①学生独立思考,探究他们的画法。

  ②教师巡视课堂,帮助有困难的学生,引导他们观察图形的长与宽的长度变化情况

  ③同学之间交流、讨论。

  ④反馈讨论结果。

  (3)小结。

  ①由学生说说有什么体会。

  ②教师小结:只有长与宽都按相同的比来画,画得才象。

  3. 完成课本画一画。

  三、 探索活动

  活动(1)

  1. 说一说点A(2,0)中,2和0分别表示什么?

  (1) 学生尝试说说自己的理解。

  (2) 教师明确说明,2表示列,0表示行。

  2. 分别说说B(4,0),C(6,2),D(6,6)各数对中的数字所表示的意义。

  3. 把表示点E、F、G、H、I、J的数对填入相应的空格。

  活动(2)

  (1) X表示什么?Y表示什么?

  (2) 2X表示什么?2Y表示什么?

  活动(3)

  1.学生独立描点。

  2.展示学生的作品。

  3. 观察比较,说说哪只猫长得象乐乐。

  4.你知道为什么?

  四、 课堂小结

  说一说把图形放大或缩小的关键是什么。