人教版五年级数学下册教案15篇
作为一位杰出的老师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那么问题来了,教案应该怎么写?下面是小编为大家收集的人教版五年级数学下册教案,仅供参考,欢迎大家阅读。
人教版五年级数学下册教案1
教学内容:
长方体的认识
教学目标:
1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。
教学重点:
掌握长方体的特征。
教学难点:
通过观察、想象、动手操作等活动进一步发展空间观念
教具运用:
一些长方体物品,课件。
教学过程:
二次备课
一、复习导入
1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)
2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的`空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?
3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。
二、新课讲授
1.认识长方体的面、棱、顶点。
(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)
板书:面
(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。
板书:棱
(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。
板书:顶点
(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。
2.研究长方体的特征。
(1)面的认识。
①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前?后,上?下,左?右。
②引导学生观察长方体的6个面各是什么形状的?
板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。
③引导学生进一步验证长方体相对的面的特征。
板书:相对的面完全相同。
④请学生完整叙述长方体面的特征。
(2)棱的认识。教师出示长方体框架教具,引导学生注意观察
人教版五年级数学下册教案2
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。
(二)核心能力
在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。
(三)学习目标
1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。
2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,
(四)学习重点
质数、合数的意义
(五)学习难点
正确掌握判断质数和合数的方法。
(六)配套资源
实施资源:《质数和合数》名师教学课件、百数表
二、教学设计
(一)课前设计(课前复习)
(1)找出1~20各数的因数。
(2)观察找出的1~20各数的因数,看看它们的个数有什么规律?
(二)课堂设计
1、谈话引入
师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?
师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?
师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的`发现。
2、问题探究
(1)认识质数和合数
①引导观察,分类思考
师:课前大家都找出了1~20各数的全部因数,谁来展示一下。
生展示引导学生评价是否正确。
师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
全班交流,归纳小结。
可以分成三类:
有一个因数:1
有两个因数:2、3、5、7、11、13、17、19
有两个以上因数:4、6、8、9、10、12、15、16、18、20
②认识质数
师:先观察只有两个因数的特征,他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)
师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。
师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)
师:最小的质数是几?最大的呢?
③认识合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
引导小结:除了1和它本身以外,还有别的因数。
师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
师:谁再举出几个合数的例子?举得完吗?说明了什么?(合数也有无数个)
想一想:最小的合数是几?最大的呢?
④1既不是质数也不是合数
师:现在还剩一个1,它是质数还是合数?
交流明确:1既不是质数,也不是合数。
⑤小结
师:按照因数个数的多少,自然数又可以分为哪几类呢?
明确:按照因数的个数,把自然数分为质数、合数和1三类。
【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
(2)100以内的质数
师:如果请你们找出100以内的质数都有哪些,可以怎样来找?
生讨论汇报。
预设1:可以把每个数都验证一下,看哪些是质数。
预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……
师:你们认为哪种方法比较简便一些?(预设2的方法)
引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。
四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?
全班交流汇报,教师课件演示。
【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。
(3)沟通联系,形成能力
师:通过今天的学习,自然数都可以怎样分类?
学生交流后,明确:
自然数按因数的个数分为:质数、因数和1;
自然数按是否是2的倍数分为:奇数和偶数。
师:请大家结合所学的这些知识介绍自己的学号。
随机抽取学生介绍,并适时拓展。
3、巩固练习
(1)将下面各数分别填入指定的圈里。
27 37 41 58 61 73 83 95
11 14 33 47 57 62 87 99
(2)下面的说法正确吗?说说你的理由。
①所有的质数都是奇数。
②所有的偶数都是合数。
③所有的奇数都是质数。
④所有的合数都是偶数。
辨析:
①所有的质数都是奇数
学生举反例反驳。
引导:你是怎样很快的找到这个数的,能说说方法吗?
交流,明确:先写出所有的质数,再找其中不是奇数的。
板书找的过程,并标注特殊数。
引申:这句话怎样改就对了?
交流,明确:除2外,所有的质数都是奇数。
辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。
学生分组辨析,每两大组辨析其中的一句话。
小组合作,用刚才列举的方法找到特殊数。
小组代表上台板演辨析的过程。
对比,明确:
除2外,所有的质数都是奇数,所有的偶数都是合数;
因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。
(3)括号内填入正确的质数。
15=()+()18=()+()
22=()+()49=()×()
4、全课总结
师:通过今天的学习你有什么收获?
小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。
(三)课时作业
(1)填空。
①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。
②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。
答案:①2和3;8和9 ②412
解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】
(2)老师家的电话号码是多少?
①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。
②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。
③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。
答案:62419918。
解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】
人教版五年级数学下册教案3
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的`同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三)学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”)均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
人教版五年级数学下册教案4
目录
一、教学计划
二、课时备课
一、五年级数学20xx—20xx学年度下学期教学计划
一、学情分析
五年级二班数学成绩不够理想,学生的书写状况有很多不理想,上课主动听讲、积极大胆发言的个性养成的不够好。少部分学生的基础知识不够扎实,从学生的思维能力看,思维的主动性不突出,逻辑能力很差,发散能力不理想。学习困难的学生占有少部分,他们的特点是:数学基础知识掌握不好,上课走神、不认真听讲、或者说根本就听不懂上课内容,缺乏学好数学的兴趣和信心。根据每个学生的特点,要因地制宜,对他们进行个别辅导,课堂上安排一些简单的问题专供他们回答,对有进步的学生进行及时表扬,树立起学习的信心,鼓励他们好好学习,使后进赶先进,达到共同进步的目的。
二、教材分析
这一册教材内容包括:观察物体(三)、因数与倍数、长方体和正方体、分数的意义和性质、图形的运动(三)、分数的加法和减法、折线统计图、数学广角和综合与实践活动等。
本册修订后的教材,既有原实验教材的主要特点,又呈现出一些新的特色。
1.改进因数与倍数教学的编排,体现数学教学改革的新理念,培养学生的数学素养
本册教材的编排既注意体现《标准》中关于因数与倍数教学与教材编排的要求,同时注重体现近年来有关这部分内容教学改革的经验首先,将以往教材“因数与倍数”的教学内容分散编排,安排在本册的两个单元里教学第二单元“因数与倍数”包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数的含义等,重点是让学生了解和掌握这些重要的概念;在第四单元“分数的意义和性质”中,结合约分教学最大公因数的概念和求法,结合通分教学最小公倍数的概念和求法其次,注意所涉及的数的范围在1~100的自然数内,避免题目中的数目过大此外,在例题的安排、素材的选取、习题的设计等方面都采取了新的措施。
2.改进熟悉分数的编排,注意沟通知识间的联系,加强对分数意义的理解
从本学期开始,学生将要系统地学习分数的意义和性质、分数的四则运算同整数、小数知识一样,分数知识也是小学数学教学的重要内容,是进一步学习数学和其他学科所必需的基础知识分数的概念比较难理解,计算起来也比较复杂为了便于学生理解和掌握分数,本套教材仍然采用了以往教材的编排体系,把分数划分为两个阶段教学第一段安排在三年级上册,借助操作直观,使学生对分数有初步的熟悉,虽然也出现了简单的分数大小比较和同分母分数加、减法,目的是为了帮助学生更好地理解分数的初步概念,给学生积累一些感性知识在系统认识了小数和初步认识了分数的基础上,本册将引导学生由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生、分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分、分数与小数互化等技能,以及分数的加、减法计算在具体安排上,本套教材一方面注意体现《标准》所提倡的教学理念,提供丰富的学习素材,在学生已有知识和经验的基础上阐述新的内容,给学生创设自主探索的空间。
3.提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展小学阶段空间与图形教学的主要目标是发展学生的空间观念,与前几册一样,本册教材继续把促进学生空间观念的发展作为空间与图形内容编排的研究重点,在教学内容方面安排了“观察物体(三)”“长方体和正方体”“图形的运动(三)”。
4.加强统计知识的教学,发展学生的统计观念,逐步形成从数学的角度进行思考问题的思维习惯
通过四年多的数学学习,在统计与概率方面,学生已经掌握了一定的知识,形成了一定的能力,积累了一定的经验。本册教材教学折线统计图,根据统计内容的调整,将单式和复式折线统计图集中进行编排,这样的编排有利于学生把握折线统计图的特点和思想,并根据折线的变化特点对数据进行
简单的分析,更好地了解统计在现实生活中的意义和作用,有效建构了数据分析观念。
5.有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力
数学学习不仅可以使学生获得参与社会生活必不可少的知识和能力,而且还能有效地提高学生的逻辑推理能力,进而奠定发展更高素质的基础因此,培养学生良好的数学思维能力是数学教学要达到的重要目标之一本套教材总体设想之一是:系统而有步骤地渗入渗出数学思想方法,尝试把重要的.数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力据此,在本册教材的“数学广角”单元,安排了“找次品”的教学,旨在通过“找次品”渗入渗出优化思想,让学生充分感受到数学与日常生活的密切联系优化是一种重要的数学思想方法,运用之可有效地分析和解决问题教材以“找次品”这一探索性操作活动为载体,让学生通过看察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
6.情感、态度、价值观的培养渗入渗出于数学教学中,用数学的魅力和学
习的收获激发学生的学习兴趣与内在动机
本册教学内容涉及数学内容的各个领域,为学生探索奇妙的数学世界提供丰富素材。例如,“图形的运动(三)”中“你知道吗”呈现了艺术家们利用平移、对称和旋转设计出的美丽图案;综合与实践活动“打电话”、数学广角“找次品”等,都蕴含了优化思想方法,简洁巧妙的解决问题策略中闪烁着数学方法的奇妙。
三、教学目标
1.理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行分数与小数的互化,能够比较熟练地进行通分和约分。
2.掌握因数与倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数。
3.理解分数加减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。
4.知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。
5.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。
6.能在方格纸上将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格
纸上设计图案。
7.通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。
8.认识单式和复式折线统计图,能根据需要选择合适的统计图表示数据。
9.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10.体会解决问题策略的多样性及运用优化的思想方法解决问题的有效性,感受数学的魅力,形成生活中有数学的意识,初步形成观察、分析及推理的能力。
11.体会学习数学的兴趣,建立学好数学的信心。
12.养成认真作业、书写整洁的良好习惯。
四、教学重点
因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计。
五、教学措施
1.认真学习新课改精神,根据新课改的要求,把握教材的内容,吃透教材的前后联系,认真备课上课,认真批改作业,做到对学生基础摸清,好、中、差生做到心中有数,更好的因地制宜,因材施教,优生优培,做好学习困难生的转化工作。
2.不断学习业务理论,提高自身素质,加强理论与实际相结合,加强直观教学,通过教具、挂图、投影仪等教学辅助手段,使学生从实物中认识并掌握数学概念知识。
3.加强基础教学的同时,继续关注学生智力的发展,培养学生学习数学的兴趣,更好发挥他们的特长,培养他们的数学能力。
4.继续深入开展“小班化教育在农村的实验与研究”,使学生在等高、等爱、等距的氛围中健康成长。
5.制作必要的数学教具,为有效地开展数学课堂教学而准备。
6.认真写好每节课后的反思。
六、课时安排
(一)观察物体(三)(2课时)
(二)因数与倍数(7课时)
1.因数和倍数???????????????2课时
2.2、5、3的倍数的特征??????????3课时
3、质数和合数???????????????2课时
人教版五年级数学下册教案5
教学内容:
教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。
教学目标:
1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。
教学重点:
经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。
教学难点:
理解三角形面积公式的推导过程。
教学准备:
多媒体课件、教材第115页的三角形。
探究方案:
一、自主准备
1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?
( ) ( ) ( )
2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?
(2)有没有直接计算三角形面积的方法呢?
(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成
二、自主探究
1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。
2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。
3.想一想
(1)拼成平行四边形的'两个三角形有什么关系?
(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?
(3)根据平行四边形的面积公式,怎样求三角形的面积?
三、自主应用
试一试:完成书上第10页的“试一试”。
四、自主质疑
说一说:(1)三角形的面积公式是怎么推导的?你还有什么疑问?
(2)你认为本节课应学会什么?
教学过程:
一、明确目标
提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?
二、交流提升
1.出示例4的方格图及其中的平行四边形。
(1)全班交流:每个涂色的三角形的面积各是多少平方厘米?
(2)小组交流:你是怎么得出每个三角形的面积的?说说你的想法。
(3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出平行四边形的面积,再除以2得出三角形的面积。
三角形的面积和平行四边形的面积会有什么联系呢?
2.交流三角形面积公式的探究情况。
(1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。
小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的平行四边形的底和高各是多少?面积是多少?
(2)全班交流:你有什么发现?(即例5下面的问题)
(3)梳理、明确
两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。
这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2
3.交流“试一试”
(1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?
(2)学生订正。
三、巩固提升
1.完成“练一练”的1、2两题。
学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个平行四边形,三角形的面积和平行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)
2.练习二第6题。
学生独立完成,组织校对。
3.练习二第7题。
(1)多媒体出示第7题的方格图及平行四边形和三角形。
(2)独立思考:你认为图中哪几个三角形的面积是平行四边形面积的一半?为什么?
(3)小组交流:分别是怎么想的。
(4)全班交流、总结
可以通过计算,判断三角形的面积是不是平行四边形面积的一半,也可以把三角形的底和高与平行四边形逐一比较,很快作出判断。
4.练习二第8、9题。
(1)学生独立完成,再交流想法。
(2)学生订正。
四、总结延伸
本节课你有什么收获?还有什么疑问?
板书设计:
三角形的面积计算
两个完全一样的三角形都可以拼成一个平行四边形。
平行四边形的面积=底×高
2倍一半
三角形的面积=底×高÷ 2
人教版五年级数学下册教案6
学习内容:
人教版小学数学五年级下册第21页第8题、第22页。
学习目标:
1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。
2.我能运用2、5、3的倍数的特征解决问题。
学习重点:
熟练掌握2、5、3的倍数的特征。
学习难点:
运用2、5、3的`倍数的特征解决综合问题。
教学过程:
一、导入新课
二、检查独学
1.互动分享独学部分的完成情况。
2.质疑探讨。
三、合作探究
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的偶数________________
(2)3个5的倍数的奇数________________
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
人教版五年级数学下册教案7
学习内容:
课本第97页例1及“做一做”,第99页练习十九第1、2、3题。
学习目标:
1.我会用分数与小数的关系,把小数化成分数。
2.我能应用所学数学知识解决问题的能力。
学习重难点:
小数化分数的.方法。
学习过程:
一、导入新课
请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?
二、合作探究、检查独学
1.自学例1,小组合作交流
用分数表示:
用小数表示:
这两个结果有什么关系:
2.用自己的话说一说怎样把小数化成分数?应注意什么问题?
①我的想法:
②完成课本97页“自己试一试”三个填空题。
3.小组代表展示、汇报
4.总结升华
5.我能行:“做一做”把下列小数化成分数。
0.4= 0.05= 0.37=
0.45= 0.013=
人教版五年级数学下册教案8
第一单元 图形的变换
第一课时
课题:轴对称教学设计
教学内容:教材第3~4页例1和例2。
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学准备:幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2.
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一 -----第1、2题。
2、课外作业:
板书设计:
轴对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
第二课时
课题:旋转教学设计
教学内容:教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的'现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1)引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5.课内练习:
1.第6页2题。
2.第9页4题、
课后作业:
板书设计: 旋转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
第三课时
课题:欣 赏 设 计教学设计
教学内容:教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1图案2
图案3图案4
对称、平移和旋转知识有广泛的应用。
人教版五年级数学下册教案9
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的`棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)2
(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页做一做。
2.完成教材第24页做一做。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
长方体和正方体的表面积(一)
人教版五年级数学下册教案10
学习内容:
人教版小学数学五年级下册教材第12—13页。
学习目标:
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的。
学习重点:
理解因数和倍数的含义,掌握求一个数的因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的'因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
人教版五年级数学下册教案11
[教材简析]
这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。
[教学目标]
1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。
2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,
3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
[教学过程]
一、复习旧知,引发冲突
1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)
我们再从右往左看,500去掉一个0,发生了什么变化?
2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)
谁的猜想正确?我们可以用什么方法证明?(举些例子)
[设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]
二、实例作证,体验小数性质的合理
1、创设情境,初步感知
(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。
(3)学生活动后组织全班交流,可能出现如下的比较方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。
②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
[设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断0.3元=0.30元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证0.3元=0.30元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]
2、试一试,加深体验
谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。
(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。
(2)交流比较方法:说说你是怎样比较的?
可能出现如下的方法:①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。
(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?
使学生初步体验小数的末尾去掉“0”,小数的大小不变。
[设计意图:“为什么去掉0.100米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现0.100米、0.10米和0.1米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]
3、总结体验,概括表达
上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。
小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。
刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?
4、突出“末尾”,体验内涵
牛奶2.80元
面包4.00元
汽水3.05元
火腿肠0.65元
(1)小强去超市购买了一些物品,得到一张购物单(出示例5):
合计10.50元
请你帮他找一找:这些物品的价格中哪些“0”可以去掉?
在书上填一填。
学生完成后进行全班交流:
①2.80元=2.8元。说说你是怎样想的。
想法一:根据小数的性质,直接去掉末尾的“0”。
得到2.80元=2.8元。你还能用其它方法证明吗?
想法二:2.80元是2元8角,2.8元也是2元8角。
想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。
谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。
②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。
由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)
(2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?
[设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的'专项教学——辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵——突出小数“末尾”。]
三、解决问题,体验小数性质的应用
1、小数的化简
根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。
化简下面的小数:0.400 0.080 1.750 29.00
学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?
2、小数的改写
试一试:不改变数的大小,把下面各数写成三位小数。0.4 3.16 10
学生独立思考,在书上填空。
完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?
小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。
如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。
四、巩固应用,深化小数性质的体验
1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。
完成后观察每组中的两个数,你有什么发现?
0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?
2、完成练一练第2题。先涂色表示各小数,再比一比。
交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?
教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。
[设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]
3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?
4、完成练习六第4题。学生独立改写。
交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。
5、完成练习六第5题。
提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)
学生独立改写后交流。
谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)
五、总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。
0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
人教版五年级数学下册教案12
教学内容:人教版第十册27~29页
教学目标:
知识目标:通过实物观察和电脑演示,使学生掌握长方体的特征,认识长方体的长、宽、高。
能力目标:小组合作,经历探究长方体特征的全过程,发展学生的空间观念,通过各种有效活动,提高学生动手操作、有序的观察的能力,初步了解一些研究的方法,发展学生的创新意识。
情感目标:在活动中自主构建数学知识,从中获得成功的体验,树立学习数学的信心。
教学重难点:
重点:掌握长方体的特征,认识长方体的长、宽、高。
难点:建立空间观念,形成表象。
教具学具准备:多媒体课件,长方体2个(其中一个两面是一正方形的长方体)、尺子、报告单、制作好的灯笼一个。
教学过程:
(一)谈话导入:
师:今天图形王国里开演唱会,下面该谁出场了呢,让我们大声说出它们的名字欢迎它。
生:长方体。
师:那长方体是不是平面图形,(不是)那是什么图形?(立体图形)生活中你见过哪些物体的形状是长方体的?
(学生列举)
看来生活中的物体真不少,这节课我们就来进一步研究长方体。
板书课题:长方体的认识
(二)探究、发现
1、初步认识长方体的面、棱、顶点。
师:请同学们拿出准备好的长方体,看一看,摸一摸,并在小组内说说你的感受。
(学生活动,小组交流,然后汇报摸的感受。)
生:有平平的面,还有边的角。
师:把你手中的长方体举起来,说一说什么地方是平平的?还有你说的边和角都在哪?
师小结:长方体上这种平平的面叫做长方体的面,把两个面相交的叫做长方体的棱,把三条棱相交的点叫做长方体的顶点。(师边摸边说)
电脑演示。
师:现在教师要考察一下你们这段知识掌握的怎么样,注意观察,我摸到长方体的哪个部分,你们就快速说出它人名称,好吗?
师生互动。
(设计意图说明:这个活动环节是让学生摸长方体,使他们对长方体的表象有所了解,把学生的生活经验和对长方体的点滴认识充分激活。面对长方体的物品,让学生表达自己的想法,进入新的学习状态。
2、探究长方体的特征。
师:我们已经认识了长方体各部分的名称,现在我们将要研究长方体有哪些特征。大家可以从面、棱、顶点三个方面进行研究,下面以小组为单位开展研究,研究时可以利用桌上的材料,加上你的巧手,做出一个或两个长方体,在做的过程上,各小组要齐心协力,然后摸一摸,数一数,量一量,比一比,看看你有什么精彩的发现?并将你们的发现填在报告单上。
附表
面棱顶点个数形状大小关系条数长度关系个数长方体
(设计意图说明:这个环节我提供了大量的制作材料,以小组为单位让学生根据自己的兴趣、愿望制作长方体,让学生调用直观感知、生活经验、做中观察,做中模仿、做中探索、做中发现,做的过程将实物、表象、模型建立联系,对特征有浅表的认识。)
师:现在哪个小组愿意派代表来说一说你们的发现?是怎样发现的?
师:你想先说说面、棱、顶点,哪个部分的特征?
生:长方体有六个面。每个面都是长方形或正方形。
师:你能说说是怎么数的吗?举起来数一数。(上、下、前、后、左、右)
大家对他的方法进行一下评价。数得好不好?
师:同学们在数图形的时候要做到有规律,这样才能不重复不遗漏。我们大家也一起来摸一摸,数一数。
师:你还发现有的长方体的面是正方形的。你能把这样的长方体举起来让大家看看吗?用手指出来哪个面是正方形?那这个长方体上有几个面是长方形、有几个面是正方形?
师:你有没有找到这样的长方体?举起来看看。(板书:长方体的六个面都是长方形,特殊情况下有两个面是正方形。)
师:继续汇报。
生:相对的面大小相等。
师:你能指一指哪两个面是相对的?
那你是怎样知道这两个相对的面面积是相等的?
生:我是用尺子量出来的,量出这两个长方形的长和宽,发现相等,说明它们的面积相等
师:长方体有几组这样相对的面(3组)哪三组你能上台指出来吗?
学生回答,电脑演示。(板书:相对的面的面积相等)
(师及时表扬鼓励)
师:下面请同学们拿出一个长方体放在桌面上仔细观察,在同一个角度最多能看到它的几个面呢?
它的前面是个什么形状?它的上面呢?也是一个长方形,由于观察角度的原因,使它看上去象一个平行四边形,它的右面也是这样的。其实长方体一共有几个面呢?为了让同学们看得更清楚,我们一般添加3条虚线,画出它的透视图。这样就可以更清楚的看到长方体有六个面了。
师:我们刚才研究的是面的特征,谁来继续汇报。
生:长方体有12条棱,它们的长度不相等。
师:都不相等吗?
生:是4条4条相等。
师:哪4条相等?(指名学生上台摸一摸)
师:这4条棱之间有什么位置关系?
生:互相平行。
师:他们组发现了这样一组互相平行的4条棱长度相等,还有这样的和这样一组平行的4条棱相等。(师边说边摸)
(电脑演示)
师:你们认为他们小组的发现怎么样?还有哪些也有这样的发现,你们的发现真是太精彩,来,我们给自己一点掌声鼓励一下。那你们是怎么发现的呢?
生1:用眼睛看出来的。
生2:用尺子量出来的。
师:有的小组是用眼睛观察出来的,而这个小组同学还对它进行测量,说明他们有很严谨的研究态度,值得我们大家去学习。再一次给他们鼓鼓掌。我们一起来看看电脑的演示。
师:另外,顶点有什么特点呢?
生:有8个顶点。(电脑演示)
(设计意图说明:这个环节是学生汇报自己的'发现,引导学生观察作品,交流中发现特征,沟通联系和区别,说的过程是数学名词,数学概念结合操作体验,通过汇报语言实现转化的过程,把感知经验上升为数学认识,由感悟上升为理性认识。)
3、认识长、宽、高。
师:每个顶点上都有几条棱相交?
生:每个顶点有3条棱相交。
师:我们把相交与同一个顶点的三条棱分别叫做长方体的长、宽、高。这是长方体的现下面也叫底面,我们通常把底面上较长的棱中做长方体的长,较短的一条棱叫做长方体的宽,把垂直于底面上的棱叫做长方体的高。
(电脑演示)
师:下面长们来进行一个快速抢答,注意看老师摸到的是长方体的长、宽、还是高。
(注意纠正不对的同学)(学生纠正)
师:它也是长,因为它和长是相对的,互相平行的,属于同一组,所以长方体有几条长?几条宽?几条高呢?
(交换位置再说一说)
师:长方体的长、宽、高会随关它摆放的位置不同发生改变。
(三)巩固应用:
1、判断。(题略)
2、量一量数学书的长、宽、高各是多少,然后说一说每个面长和宽是多少。
3、做灯笼,把所需要的木条和纸的数记录下来。
(四)教学小结:
同学们,通过本课的学习,我们已经对长方体有了一个基本的了解,知道了长方体的基本特征。在生活中,我们经常见到长方体,注意留心生活,我们就会学到很多的数学知识。
板书设计:
面棱顶点个数形状大小关系条数长度关系个数长方体6所有的面都是长方开,特殊情况下有两个面是正方形。相对的面的面积相等12相对的棱长度相等8
人教版五年级数学下册教案13
教学目标
一、知识与技能
1.认识正方体,掌握正方体的特征。
2.理解长方体与正方体的联系与区别。
3.发展空间观念。
二、过程与方法
经历观察实物和动手操作等活动,掌握正方体的特征。
三、情感态度与价值观
体验合作探究的乐趣,感受数学与生活的联系,培养学生的创新意识。
教学重点
掌握正方体的特征。
教学难点
理解长方体和正方体的关系。
教学准备
正方体纸盒、长方体和正方体对比教具、多媒体课件。
课时安排
1课时。
教学过程
一、复习导入
1.回忆长方体的特征,请学生用语言进行描述。
2.操作:同桌交流,分别说出长方体的棱有几条?可以分别分成几组?相交于同一个顶点的三条棱叫做什么?
师:今天这节课,我们继续学习一种特殊的.立体图形。
二、新课讲授
1.探索正方体的特征。
学生拿出准备好的正方体纸盒,观察并思考。
师:这些都叫什么立体图形?
生:都是正方体。
师:要探究正方体具有什么特征,我们应该从哪方面去思考?
生:从面、棱、顶点这三个方面
2.合作学习。
学生根据手中的正方体学具,小组合作探究。
3.集体交流。
(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。
(2)组:正方体有12条棱,正方体的12条棱的长度相等。
(3)组:正方体有8个顶点。
请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。
师:怎样判断一个图形是不是正方体?
4.教学正方体和长方体的联系与区别:
老师出示一个正方体教具。请学生讨论:它是不是一个长方体?
学生充分讨论,集体交换意见。
学生甲组:这个物体的六个面都是正方形,它不是长方体。
学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。
学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。
教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:
师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。
三、课堂作业
1.教材第20页的“做一做”。
2.教材第21~22练习五的第4、5、8、9题。
四、课堂小结
今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)
板书设计
正方体
正方体有6个面,都是正方形。有12条棱,每条棱长度相等。有8个顶点。
长方体与正方体的比较
教学反思
正方体的学习是以长方体知识为基础的,在教学时可以将两者联系在一起,便于学生的学习。在教学中,教师要着重注意以下几点:1.可采用观察彩图和实物、动手操作、合作交流等方式,让学生在活动中认识长方体和正方体的特征,发展空间观念,并获得良好的情感体验。2.注重知识的整体性,把长方体和正方体放在同一节中呈现,有利于对学生分析、比较和概括能力的培养。3.联系学生的生活经验。本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律。在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
人教版五年级数学下册教案14
教材分析
质数与合数是小学数学人教版五年级下册的内容。
本节课的内容是在学生已掌握了因数倍数奇数和偶数的基础上,引入质数合数两个新概念。这部分内容也是学习求最大公因数和最小公倍数的基础。
教学目标
1.理解和掌握质数合数的意义,初步掌握判断一个数是质数还是合数的方法。
2.使学生经历探索质数合数的过程,培养学生归纳概括能力。
3.学会与人合作交流,培养解决问题的优化意识。
教学重点:理解质数合数的含义,能正确判断一个数是指数还是合数。
教学难点:能运用一定的方法从不同角度判断感悟质数合数。
教学过程:
一、创设情境,提出问题。
师:“六一”儿童节快要到了,有18个学生要参加表演,表演节目分组排演,老师准备将18人分成人数相等的几个小组。现在请同学们想一想,分一分,试试有几种不同的分法?怎样分合适?
二、自主探究,探索新知
学生先独立思考,再小组合作交流,学生基本有以下几种解决问题的方案:
1.直观操作。用圆片代表人,操作演示。
2.除法计算。如18÷ 2 = 9,将18人平均分成2组,每组9人。
3.分解因式。18=1×18=2×9=3×6。
三、交流反馈,深入研究
学生全班交流解决问题的方法,说一说自己的方法和理解。研究出6种结果:
1人一组,可分18组;
2人一组,可分9组;
3人一组,可分6组;
6人一组,可分3组;
9人一组,可分2组;
18人一组,可分1组。
通过小组交流得出,如何分组可根据实际情况来定,如表演相声可2人一组,若表演课本剧6人一组比较合适,如果表演舞蹈,可以9人一组,分成2组等等。
师:同学们勤于思考,善于动脑,想出了这么多的方法解决分组问题,你最喜欢哪种方法,说说你的理由。
四、拓展新知,归纳概念
师:如果参加表演的人数是13人,按同样的要求则有几种分法?
学生发现,无论怎么分,都只能是:一种是一人一组,分成13组,另一种只能是13人一组,而学生又觉得这两种分法都不是很合适。于是产生新的问题:为什么将18人分成人数相等的小组就有多种分法,而将13人分成人数相等的小组就只有两种呢?通过观察思考发现18可以写成18=1×18=2×9=3×6,而13只能写成13=1×13或者13=13×1,也就是说18的因数有多个,而13的因数只有两个。那么在整数中是否还有这样的数,它的因数只有1和它本身呢?
师:有一类整数,它的因数只有1和它本身,在数学中我们称它为质数。另一类整数,它的因数除了1和它本身以外,还有其他的因数,像这样的数我们称它为合数(出示课题)。就像我们刚才讨论的这两个数中,18是合数,而13是质数。你能根据合数和质数的特征举例说说质数和合数吗?
五梳理知识,理解概念
1.师:刚才我们已经认识了质数和合数,请再和你的同桌说一说:什么叫质数?什么叫合数?(学生互相说概念。)
师:我们知道了什么样的数是质数,下面来做个小游戏。每个学生在白纸上写下自己的学号。
师:你的学号如果是50以内的质数,请你起立。
(学号是50以内质数的学生起立。)
集体订正:站错的同学,明确用找因数个数的方法来判断是否是质数。
师:请你们将50以内的质数按照从小到大的顺序排列起来。
师:你的学号如果是50以内的合数,请你起立。
(学号是50以内合数的学生起立。)
随机采访:请学生说一说自己所拿的学号为什么是合数?
师(询问学号是1的同学):你为什么两次都没起立?
生:因为我的学号1既不是质数,也不是合数。
(引导学生理解1没有2个不同的因数。)
(板书:1既不是质数也不是合数。)
2.判断一个数是质数还是合数,关键是什么?以其中一个为例,说出判断过程。
3.判断一个数是不是质数时,需要把它的所有约数都找出来吗?为什么?
交流明确:除2外,2的倍数都是合数;
3的倍数都是合数,但3本身除外;
5的倍数都是合数,但不包括5。……
小结方法:判断一个数是否是合数,可以用能被2、3、5整除的数的特征去判断,有时还可以用7、11……去判断。
4.找出50~100的质数(分组找数,提炼方法)
分组找质数:五个组分别研究51~60的`数、61~70的数、71~80的数、81~90的数、91~100的数。
板演找到的质数:53、59;61、67;71、73、79;83、89;97。
集体订正:有不同意见的学生用色笔勾划指正,形成25个质数。
小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。
5.师:这些数我们都会判断了,下面我们来判断两个较大的数好不好?
(依次出现20xx,…)
生:除了1和它本身两个因数外,肯定还有3这个因数,所以这个数是合数。
(依次出现3214675,…)
生:依据能被2、3、5整除的数的特征进行判断。
师:不管它还有几个因数,只要再举出一个,就足以证明它是一个合数了。
6.判断下列数哪些是质数,哪些是合数:17,1725,219,364,39。
师:如果按照因数的个数分类,0除外的自然数可以分为几类呢?
(学生分类,出示如下的集合图。)
六实践应用,解决问题
举例说一说我们生活中的质数和合数。
做一做
1.36块体积为1立方厘米的小正方体积木,可以拼成几个不同的长方体?
2.有一个五位数,万位上的数既不是质数也不是合数;千位上的数比最小的合数多1;百位上的数是10以内最大的素数;十位上的数既是偶数,又是质数;个位上的数是最小的两个连续质数的积。(这个数字是15726)
3.妈妈给萌萌买了相同几个的几盒糖,付了40元,售货员找给她4元钱,你知道她买了几盒吗?
七课后小结
师:通过以上这些练习可以看出,同学们对质数和合数掌握的真是不错!老师把今天所学到的知识一一展示在了黑板上,谁来说一说通过这节课的学习你学到了什么新的知识?
生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数,也不是合数。
自然数可以分为质数合数还有1。
学会了判断一个数是质数还是合数的方法。
人教版五年级数学下册教案15
教材分析
《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。
例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
学情分析
本班学生动手能力不是很强,自主探究方法、方式较少。
教学目标
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
教学重点和难点
理解和掌握求圆柱表面积的计算方法。
教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(二)创设探究空间,主动发现新知
1、 认识圆柱的表面
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的'基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、 把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X2+ 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律 验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h
师:如果圆住展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(四)解决生活问题 深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
板书设计
长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
【五年级数学下册教案】相关文章:
数学五年级下册教案12-20
数学五年级下册教案优秀05-08
五年级数学下册教案05-15
五年级下册数学的教案11-06
五年级人教版数学下册教案12-23
五年级数学下册的教案08-27
小学数学下册教案11-28
五年级下册数学备课教案01-06
五年级数学下册教案人教版01-06
五年级数学下册教案最新06-06