因式分解教案

时间:2024-07-12 09:14:35 教案 我要投稿

关于因式分解教案合集6篇

  作为一名优秀的教育工作者,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?下面是小编精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。

关于因式分解教案合集6篇

因式分解教案 篇1

  教学目标:

  1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解 4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.

  分解因式要注意以下几点: (1).分解的对象必须是多项式.

  (2).分解的.结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  试一试把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例题讲解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知识应用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除吗?还能被哪些整数整除?

  四、拓展应用

  1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

  五、课堂小结:今天你对因式分解又有哪些新的认识?

因式分解教案 篇2

  教学目标:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

  2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

  3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

  4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的`体验,培养合作交流意识。

  教学重点:

  应用平方差公式分解因式.

  教学难点:

  灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

  教学过程:

  一、复习准备 导入新课

  1、什么是因式分解?判断下列变形过程,哪个是因式分解?

  ①(x+2)(x-2)= ②

  ③

  2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

  x2+2x

  a2b-ab

  3、根据乘法公式进行计算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 学习新知

  (一) 猜一猜:你能将下面的多项式分解因式吗?

  (1)= (2)= (3)=

  (二)想一想,议一议: 观察下面的公式:

  =(a+b)(a—b)(

  这个公式左边的多项式有什么特征:_____________________________________

  公式右边是__________________________________________________________

  这个公式你能用语言来描述吗? _______________________________________

  (三)练一练:

  1、下列多项式能否用平方差公式来分解因式?为什么?

  ① ② ③ ④

  2、你能把下列的数或式写成幂的形式吗?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)试一试:

  例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

因式分解教案 篇3

  (一)学习目标

  1、会用因式分解进行简单的多项式除法

  2、会用因式分解解简单的方程

  (二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

  难点:应用因式分解解方程涉及到的`较多的推理过程是本节课的难点。

  (三)教学过程设计

  看一看

  1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:

  ①________________②__________

  2.应用因式分解解简单的一元二次方程.

  依据__________,一般步骤:__________

  做一做

  1.计算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成课后练习题

  想一想

  你还有哪些地方不是很懂?请写出来。

  ____________________________________

  (四)预习检测

  1.计算:

  2.先请同学们思考、讨论以下问题:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列结论中哪个正确( )

  ①A、B同时都为零,即A=0,

  且B=0;

  ②A、B中至少有一个为零,即A=0,或B=0;

  (五)应用探究

  1.解下列方程

  2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清练习

  1.计算

  2.解下列方程

  ①7x2+2x=0

  ②x2+2x+1=0

  ③x2=(2x-5)2

  ④x2+3x=4x

因式分解教案 篇4

  教学目标:

  1、进一步巩固因式分解的概念;

  2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

  (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

  (7)、2πR+2πr=2π(R+r)因式分解

  2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

  分解因式要注意以下几点:

  (1)。分解的对象必须是多项式。

  (2)。分解的结果一定是几个整式的乘积的形式。

  (3)。要分解到不能分解为止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的'正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  试一试把下列各式因式分解:

  (1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

  (3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例题讲解

  例1、分解因式

  (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知识应用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?

  五、拓展应用

  1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。

  五、课堂小结

  今天你对因式分解又有哪些新的认识?

因式分解教案 篇5

  教学目标

  1、 会运用因式分解进行简单的多项式除法。

  2、 会运用因式分解解简单的方程。

  二、教学重点与难点教学重点:

  教学重点

  因式分解在多项式除法和解方程两方面的应用。

  教学难点:

  应用因式分解解方程涉及较多的推理过程。

  三、教学过程

  (一)引入新课

  1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y

  (二)师生互动,讲授新课

  1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一个小问题 :这里的x能等于3/2吗 ?为什么?

  想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习

  合作学习

  想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0

  试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的'根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2

  等练习:课本P162课内练习2

  做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

  教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知识,总结收获因式分解的两种应用:

  (1)运用因式分解进行多项式除法

  (2)运用因式分解解简单的方程

  (四)布置课后作业

  作业本6、42、课本P163作业题(选做)

因式分解教案 篇6

  学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.

  学习重点:同底数幂乘法运算性质的推导和应用.

  学习过程:

  一、创设情境引入新课

  复习乘方an的意义:an表示个相乘,即an=.

  乘方的结果叫a叫做,n是

  问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?

  列式为,你能利用乘方的`意义进行计算吗?

  二、探究新知:

  探一探:

  1根据乘方的意义填空

  (1)23×24=(2×2×2)×(2×2×2×2)=2();

  (2)55×54=_________=5();

  (3)(-3)3×(-3)2=_________________=(-3)();

  (4)a6a7=________________=a().

  (5)5m5n

  猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?

  说一说:你能用语言叙述同底数幂的乘法法则吗?

  同理可得:amanap=(m、n、p都是正整数)

  三、范例学习:

  【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

  1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

  2.计算:

  (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

  【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

  (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

  (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

  四、学以致用:

  1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

  ⑷-4444=⑸22n22n+1=⑹y5y2y4y=

  2.判断题:判断下列计算是否正确?并说明理由

  ⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

  ⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

  3.计算:

  (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

  (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

  (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

  4.解答题:

  (1)已知xm+nxm-n=x9,求m的值.

  (2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?

【因式分解教案】相关文章:

因式分解教案04-02

(经典)因式分解教案08-23

因式分解教案(热)10-22

《因式分解》说课稿08-27

《因式分解》说课稿(通用12篇)07-04

高中教案教案03-05

大班教案桥教案05-26

《落日》教案 教案教学设计12-16

教案06-18

小学教案体育游戏教案05-20