二次根式教案

时间:2024-08-19 20:26:43 教案 我要投稿

有关二次根式教案四篇

  作为一名默默奉献的教育工作者,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编收集整理的二次根式教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

有关二次根式教案四篇

二次根式教案 篇1

  教学目的

  1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

  2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

  教学重点

  最简二次根式的定义。

  教学难点

  一个二次根式化成最简二次根式的方法。

  教学过程

  一、复习引入

  1.把下列各根式化简,并说出化简的根据:

  2.引导学生观察考虑:

  化简前后的根式,被开方数有什么不同?

  化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

  3.启发学生回答:

  二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

  二、讲解新课

  1.总结学生回答的内容后,给出最简二次根式定义:

  满足下列两个条件的二次根式叫做最简二次根式:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽的因数或因式。

  最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

  2.练习:

  下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

  3.例题:

  例1 把下列各式化成最简二次根式:

  例2 把下列各式化成最简二次根式:

  4.总结

  把二次根式化成最简二次根式的根据是什么?应用了什么方法?

  当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

  当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

  此方法是先根据分式的基本性质把被开方数的.分母化成能开得尽方的因式,然后分子、分母再分别化简。

  三、巩固练习

  1.把下列各式化成最简二次根式:

  2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  四、小结

  本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。

  五、布置作业

  下列各式化成最简二次根式:

二次根式教案 篇2

  【1】二次根式的加减教案

  教材分析:

  本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

  学生分析:

  本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  设计理念:

  新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

  教学目标知识与技能目标:

  会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

  过程与方法目标:

  通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的'抽象概括能力。

  情感态度与价值观:

  通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

  重点、难点:重点:

  合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

  难点:

  二次根式加减法的实际应用。

  关键问题 :

  了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

  教学方法:.

  1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

  2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

  3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

  【2】二次根式的加减教案

  教学目标:

  1.知识目标:二次根式的加减法运算

  2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

  3.情感态度:培养学生善于思考,一丝不苟的科学精神。

  重难点分析:

  重点:能熟练进行二次根式的加减运算。

  难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

  教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

  运用教具:小黑板等。

  教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的'方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1.下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2.计算:

(1) ;

(2)

(3)

(4)

3.(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、 B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

二次根式教案 篇3

  第十六章 二次根式

  代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式

  5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)宽:3 ;长:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.

  解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.

  本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.

  在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.

  在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.

  练习(教材第4页)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  习题16.1(教材第5页)

  1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.

  6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.

  7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.

  8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

  9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.

  10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.

  如图所示,根据实数a,b在数轴上的位置,化简:+.

  〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.

  解:由数轴可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.

  已知a,b,c为三角形的三条边,则+= .

  〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解题策略] 此类化简问题要特别注意符号问题.

  化简:.

  〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.

  解:当x≥3时,=|x-3|=x-3;

  当x<3时,=|x-3|=-(x-3)=3-x.

  [解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.

  5

  O

  M

二次根式教案 篇4

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的'探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

【二次根式教案】相关文章:

二次根式教案02-15

二次根式教案05-15

二次根式教案[实用]05-15

二次根式教案[必备]05-15

《二次根式的运算》的教案03-24

二次根式教案(精选15篇)06-13

二次根式教案【大全15篇】05-15

二次根式教案3篇(推荐)11-21

二次根式说课稿04-29

二次根式教案集锦15篇08-02