鸡兔同笼教案

时间:2024-07-29 17:14:37 教案 我要投稿

【精华】鸡兔同笼教案四篇

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?下面是小编精心整理的鸡兔同笼教案4篇,欢迎大家分享。

【精华】鸡兔同笼教案四篇

鸡兔同笼教案 篇1

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

  3、在解决问题的过程中培养学生的逻辑推理能力。

  教学重点:

  理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

  教学难点:

  理解用假设法的算理并能运用不同的方法解决实际问题。

  教学方法:

  1、采取直观形象的方式,让学生探讨不同的方法。

  2、适当把握教学要求。

  一、历史激趣,导入新课

  今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

  师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的.历史趣题“鸡兔同笼”的问题。(板书课题)

  结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

  二、探究交流,尝试解决问题。

  1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

  2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

  让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

  3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

  学生猜测,老师板书

  4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

  (一)、尝试列表法

  为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

  (二)、假设法

  1、假设全是鸡

  8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

  26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

  4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

  10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

  8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

  2、假设全是兔

  我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

  先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

  小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

鸡兔同笼教案 篇2

  预设:

  学生1:列表法能很清晰地解决这个问题。

  学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

  教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

  学生小组交流汇报。

  预设:

  学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

  学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

  【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的`学习做好铺垫。

  4.数形结合理解假设法。

  教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

  (1)假设全是鸡。

  教师:我们先看表格中左起的第一列,8和0是什么意思?

  32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

  4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

  6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

  8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

  (3)提出假设法概念。

  刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

  (板书:假设法)

  【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

  (三)知识运用

  学生独立完成古代趣题。

  【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

  (四)全课小结

  这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

鸡兔同笼教案 篇3

  教学目标:

  1、知识与技能

  让学生学会“列举法”,并运用“列举法”解决问题。

  2、过程与方法

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  让学生养成“尝试”的数学思维与方法。

  3、情感态度与价值观

  利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

  了解中国数学历史,渗透数学文化的.思想。

  教学重点:

  让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

  教学难点:

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  教学关键:

  让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

  教具准备:

  三个表格,卡片。

  教学过程:

  一、导入

  1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

  2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

  3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

  二、授新课

  1、师:老师想考考你们,你们看

  (师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

  师:请你赶快猜一猜吧!生:独立思考后全班交流。

  (此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把

  这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

  2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

  (1)a、让生齐读题目

  b、师让生独立思考后再与同桌交流。

  c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

  d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

  e、 观察这个表格,你发现了什么?(指名生说)

  (2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩

  子。

  a、我们再来观察一下这个表格,我们从1开始假设时就有78

  条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

  b、根据生的回答,师板书:

  c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

  这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

  (3) 师:还有别的列举法?

  a、 学生可能会说出取中列举法,师就问让其说清楚,明白。

  学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

  b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

  3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

  4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,

  大家有信心运用所学问题解决实际问题吗?

  三、

  1、试一试

  完成81页练一练第2、3题。(先独立完成再集体订正。)

  2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

  四、课堂小结:

  通过这节课的学习,你学会了什么?(先请生说,师再总结。)

鸡兔同笼教案 篇4

  教学内容:

  教科书数学六年级上册P112-115。

  教学目标:

  1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

  2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

  3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

  教学重点:

  让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

  教学难点:

  理解假设法中各步的算理

  教具准备:

  多媒体课件

  教学过程:

  一、解读原题,直奔主题。

  1、谈话,激情导入

  师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

  (1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

  (2)揭示课题

  (3)原题解读

  师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

  课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

  [设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

  二、合作探究,寻找策略。

  1、改变原题

  师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

  (1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

  (2) 理解题意:从题中你获得哪些信息?

  让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

  探索策略

  2、列表尝试法

  ①猜一猜:笼子里可能有几只鸡?几只兔?

  ②说一说:他猜的对吗?要怎么知道他猜的对不对?

  ③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

  ④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

  ⑤ 反馈交流

  A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

  B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

  ⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

  [设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

  3、假设法

  ①. 学生独立尝试列式解答

  ②. 小组讨论,说一说用假设法解答的算理

  ③. 汇报反馈

  ④. 课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

  A. 假设笼子里都是鸡,一共有几只脚?

  条件告诉我们几只脚,这样就少了几只脚呢?

  为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

  那么几只兔看成鸡一共少了10只脚呢?

  B. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

  为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

  那么几只鸡看成兔一共多了6只脚呢?

  ⑤. 让学生对照课件说一说算式表示的意义

  ⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

  [设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

  4、方程解

  解:设兔有 只,则鸡有 只。

  也可以设:鸡为 只,则兔有 只。(略)

  师:在列方程解答时碰到什么困难?该如何解决?

  [设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

  5、梳理小结,比较优化。

  三、推广应用,建立模型。

  1. 选择自己喜欢的方法解决《孙子算经》中的原题。

  2. 解决生活中的“鸡兔同笼”的问题。

  (1)动物园中的问题。

  动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

  (2)游乐园中的问题。

  有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

  3. 对比联系,建立模型。

  4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

  5.让学生举出生活中类似的“鸡兔同笼”问题。

  [设计意图:放手让学生运用学到的'“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

  四、引导阅读,课外延伸。

  1. 阅读并思考课本114页的“阅读材料”。

  2. 完成练习二十六的1—3题。

  [设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

【鸡兔同笼教案】相关文章:

《鸡兔同笼》教案05-06

鸡兔同笼教案07-14

鸡兔同笼教案15篇03-28

《鸡兔同笼》教案(精选17篇)03-19

《鸡兔同笼》教案15篇【优选】05-20

【必备】鸡兔同笼教案三篇04-17

鸡兔同笼教案范文集锦七篇05-13

鸡兔同笼教案范文集合七篇05-14

《鸡兔同笼》教学反思06-25