分数乘法教案

时间:2024-07-06 01:37:07 教案 我要投稿

有关分数乘法教案锦集九篇

  在教学工作者实际的教学活动中,常常要写一份优秀的教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?下面是小编帮大家整理的分数乘法教案9篇,仅供参考,大家一起来看看吧。

有关分数乘法教案锦集九篇

分数乘法教案 篇1

  《分数乘法》

  教学目标和要求

  1、结合具体情境,在操作的基础上探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;

  3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系,分数乘法

  (三)教案。教学重点

  1、在具体情境中探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。

  教学准备

  1、每人准备一条约10厘米长的纸条;

  2、每人准备2张长方形的纸。

  教学过程一、探索分数乘分数的意义和计算方法。

  1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。PPT出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。

  ⑴拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“ ”师:剪去一半,还剩下多少?这时“ ”表示什么意思呢?剩下的占这张纸的“ ”用算式表示:1*1/2师:请同学们再把剩下的“ ”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2 ,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。

  2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的要求(PPT出示)折一折,涂一涂。讨论:

  (1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?你能用算式表示出这幅图的意思吗?3/4×1/4=3/16,就是求3/4的1/4是多少?

  (2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

  学生独立完成,并列式汇报

  3、做一做:根据图示,想一想,列出算式,算出结果。

  1/2×1/4=1/2×3/4=

  二、讨论小结分数乘分数的计算方法观察上面的`例子,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组内交流。说一说:你能总结分数与分数相乘的计算方法吗?小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。想一想:此法与分数与整数相乘的方法有矛盾吗?

  三、巩固练习:

  1、P7做一做

  2、P8试一试:强调,能约分的要先约分。

  3、提高练习:

  (2)教科书第9页数学故事“唐僧分瓜”。通过这节课的学习,你有什么收获?通过这节课的学习,我们知道了分数乘法的意义就是求这个数的几分之几是多少;计算分数乘法时,要把分子相乘的积作分子,分母相乘的积作分母。板书设计分数乘法

  (三)1 *1/2=1/21的1/2是多少?

  3/4*1/4=3*1/4*4=3/161/2*1/2=1/41/2的1/2是多少?

  1/4*3/4=……… =3/161/4*1/2=1/81/2*1/4=………=1/8………1/2*3/4=………=3/83*3/4=3/1*3/4=9/4

分数乘法教案 篇2

  教学目标

  1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

  2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

  教学重点和难点

  1.正确分析关键句,找准单位1。

  2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

  教学过程

  (一)复习准备

  1.口算,并口述第二组算式的意义。

  2.列式。

  这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

  这里的b,a,x就是什么?(单位1)

  3.找出下列各句子中的单位1,再说明另一个数量与单位1的关系。

  提问:(3)题中怎样求甲?(4)题中怎样求乙?

  今天我们继续学习分数乘法应用题。

  (二)讲授新课

  1.出示例3。

  2.理解题意,画出线段图。

  (1)读题,找出已知条件和所求问题。

  (2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

  (3)分组讨论这两个已知条件应怎样理解。

  (4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

  18元看作单位1,平均分成6份,小华储蓄的钱数相当于这样的5份。

  师板演:

  数看作单位1,平均分成3份,小新储蓄的钱数相当于这样的'2份。

  所以小新储蓄的钱数是以谁为单位1?(以小华储蓄的钱数为单位1。)

  怎样用线段表示小新的钱数?

  生口述,师继续板演:

  (把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

  求什么?(小新的钱数)

  3.分析数量关系,列式解答。

  (1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

  必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

  因此这道题要分两步解答。

  根据哪两个条件能求出小华的钱数?

  求出小华的钱数,又怎样求小新的钱数?

  (2)以小组为单位共同完成列式解答。

  (3)口述列式,并说明理由。

  求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

  求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

  (4)你能列综合算式解答吗?

  答:小新储蓄了10元。

  (三)巩固反馈

  1.出示做一做。

  小明有多少枚邮票?

  (1)读题,找出已知条件和问题。

  (2)请你确定从哪些条件入手分析。

  (3)小组讨论:分析已知条件并画线段图。

  (4)反馈:请代表分析,并出示该小组的线段图。

  作单位1,平均分成6份,小新的邮票数量是这样的5份。

  均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

  应先求什么?再求什么?

  (6)列式解答,做在练习本上。

  2.出示21页的9题。

  要求学生独立画图,分析解答。再互查。

  3.变换条件和问题进行对比练习。

  (1)找出已知条件中的相同处和不同处。

  (2)画图分析并列式解答。

  4.选择正确列式。(小组讨论完成)

  第二天看了多少页?

  (四)布置作业

  课本20页第6题,21页第10,12题。

  课堂教学设计说明

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位1,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

  这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位1的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

  教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案 篇3

  分数乘法一步应用题

  教学目标:

  1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

  教学重点:理解题中的单位“1”和问题的`关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教学过程:

  一、复习

  1、先说下列各算式表示的意义,再口算出得数。

  12× ×

  2、列式计算。

  (1)20的 是多少? (2)6的 是多少?

  3、学生得出:求一个数的几分之几用乘法。

  二、新授

  1、教学例1

  (1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。

  (2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

  (3)在分析题意的基础上,学生独立列式、计算。

  2500× =1000(平方米)

  2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

  三、练习

  1、练习四第2题:让学生先找出分率句中隐藏的单位“1”——全世界的丹顶鹤数20xx只。

  2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。

  四、总结

  解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

分数乘法教案 篇4

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的'氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘法教案 篇5

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的.和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

分数乘法教案 篇6

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量的对应分率。

  教学过程:

  一、复习

  1、口答:把什么看作单位1的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。(2)用去一部分钱后,还剩下。

  (3)一条路,已修了。(4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?(2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的稍复杂的分数乘法应

  用题。

  二、新授

  1、教学例2

  (1)运用线段图帮助学生分析题意,寻找解题方法。

  (2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位1的量?让后把线段图表示完整。

  (3)四人小组讨论,根据线段图提出解决办法,并列式计算。

  解法一:80-80=80-10=70(分贝)

  (4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

  解法二:80(1-)=80=70(分贝)

  (5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

  2、巩固练习:P20做一做

  3、教学例3

  (1)读题理解题意后,提出婴儿每分钟心跳的次数比青少年多表示什么意思?(组织学生讨论,说说自己的`理解)

  (2)引导学生将句子转化为婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的。着重让学生说说谁与谁比,把谁看作单位1。

  (3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75=75+60=135(次)

  解法二:75(1+)=75=135(次)

  4、巩固练习:P21做一做(列式后让学生说说算式各部分表示什么)

  三、练习

  1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位1的量。

  2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

  四、布置作业

  练习五第7、8、9、10题。

  教学追记:

  例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位1,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

分数乘法教案 篇7

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的`应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

分数乘法教案 篇8

  教学目标:

  1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。

  2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。

  教学重点:

  理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学准备:

  学生做的风筝

  教学过程:

  一、 复习

  1、1/2× 3表示的意义是什么?(让学生自己说一说,)

  2、分数乘整数的'计算法则是什么?

  二、基础练习

  1、的3倍是多少?

  2、10个是多少?

  订正时说说每个算式表示的意义。

  三、专项练习

  1、自主练习第4、5、6题

  这三题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

  2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

  3、第7、10题

  这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

  4、第9、12题

  这两道题是学生自己独立作,利用分数与除法的关系解决问题的。

  四、合作总结

  这节课你巩固了那些知识?

  五、创意作业

  同桌出题交换解答,交换批改,共同提高。

分数乘法教案 篇9

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“

  个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果

  3.比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

  生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为

  提出质疑:3个

  相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个

  相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的`联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

  (二)分数乘整数的计算方法

  1.不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

  的计算过程用式子该如何表示?预设:

  生1:按照加法计算

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

  2.归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

  二、巩固练习,强化新知

  1.例1“做一做”第1题

  师:说出你的思考过程。

  2.例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的

  是多少。”

  (3)出示第2小题学生自练。引导说出:“12×

  表示求12 L的

  是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

  ,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的

  是多少。”

  2.比较两种意义

  出示:一袋面包重

  千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

  五、联系实际,灵活运用

  1.算式

  可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了

  ,用去了多少吨?

  (2)一堆煤有

  吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3.拓展练习

  1只树袋熊一天大约吃

  kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2.谁会用含有字母的式子表示分数乘整数的计算方法?

  【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

【分数乘法教案】相关文章:

分数乘法教案03-14

分数乘法的教案05-18

分数乘法教案05-18

分数乘法教案优秀02-17

关于分数乘法的教案03-31

(优秀)分数乘法教案05-18

分数乘法教案(15篇)03-16

分数乘法教案优秀(热门)10-13

分数乘法教案15篇03-14

分数乘法教案经典【15篇】05-24