一次函数教案

时间:2024-06-19 19:25:42 丽华 教案 我要投稿

一次函数教案人教版(精选10篇)

  作为一名无私奉献的老师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的一次函数教案人教版,仅供参考,欢迎大家阅读。

一次函数教案人教版(精选10篇)

  一次函数教案 1

  教学目标

  1、经历一般规律的探索过程,发展学生的抽象思维能力。

  2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

  教学重点

  1、一次函数、正比例函数的概念及两者之间的关系。

  2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根

  课件教学过程

  一、创设问题情境,引入新课

  1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

  2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

  3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

  二、新课学习

  1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

  2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么相同之处?

  让学生分析出他们的共同点:

  ①左边都是因变量,右边都是含自变量的代数式;

  ②自变量X与因变量Y的次数都是1;

  ③从形式上看,形式都为y=kx+b,K,b为常数。

  问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

  问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

  并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

  3、例题学习

  例题1是考察学生对一次函数与正比例函数概念的.理解,学生直接进行口答。

  例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

  三、随堂练习

  1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

  A、y= +x B、y=—0。8x C、y=0。3+2x2 D、y=6—

  2、已知函数y=(m+1)x+(m2—1),当m,y是x的一次函数;当m,y是x的正比例函数。

  四、拓展应用

  学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:

  (1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x—500,y乙=180x)

  (2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20—500=3500(元);y乙=180×20=3600(元);

  y甲< y乙,所以到甲旅行社合算。)

  (3)在什么情况下,选择乙旅行社?(依题意得,y甲— y乙>0,即(200x—500)—180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)

  五、课堂小结

  让学生归纳本节课学习内容:

  1、一次函数、正比例函数概念以及它们之间的关系。

  2、会根据已知信息写出一次函数的关系式。

  六、作业读一读:

  中国古代漏刻必做题:161页习题6.2第1、2、3题选

  做题:161页试一试

  一次函数教案 2

  教学内容:

  一次函数

  教学目标:

  1、知识与技能:

  掌握一次函数解析式的特点及意义;理解一次函数图象特征与解析式的联系规律。

  2、过程与方法:

  利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力。

  3、情感态度与价值观:

  通过学习,培养学生独立思考、合作探究,科学的思维方法。

  4、法制目标:

  通过对新知的应用,向学生渗透《中华人民共和国环境保护法》提高学生对法律的认识。

  教学重点:

  1、一次函数解析式特点

  2、一次函数图象特征与解析式联系规律。

  教学难点:

  一次函数图象特征与解析式的联系规律。

  教学过程

  一、提出问题,创设情境

  问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃。登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃。试用解析式表示y?与x的关系。

  分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃。因此y与x的函数关系式为:y=15-6x(x≥0)

  当然,这个函数也可表示为:y=-6x+15(x≥0)

  当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃)。

  这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题。

  二、导入新课

  1、合作探究:

  我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?

  (1)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差。

  (2)、一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。

  (3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取)。

  (4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化。

  通过思考分析,可以得到这些问题的函数解析式分别为:

  (1)、c=7t-35。

  (2)、G=h-105。

  (3)、y=0.01x+22。

  (4)、y=-5x+50。

  2、归纳总结:

  它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和。

  一般地,形如y=kx+b(k、b是常数,k≠0?)的函数,?叫做一次函数(?linearfunction)。当b=0时,y=kx+b即y=kx。所以说正比例函数是一种特殊的一次函数。

  3、新知应用:

  某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元。在生产过程中,平均每生产一件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。

  方案一:工厂污水净化处理1立方米污水所用原材料费为2元,并且每月排污设备损耗费为30000元。

  方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需要付14元的排污费。

  问:

  (1)设工厂每月X件件产品,每月利润为y元,分别求出依方案一和方案二处理污水时y与x的'函数关系式。(利润=总收入—总支出)

  (2)设工厂每月生产量为6000件产品时,你作为厂长在不污染环境,又节约资源的前提下应选用哪一种处理污水的方案?请通过计算加以说明。

  通过此题,可以向学生渗透《中华人民共和国环境保护法》中的第二十四条产生环境污染和其他公害的单位,必须把环境保护工作纳入计划,建立环境保护责任制度;采取有效措施,防治在生产建设或者其他活动中产生的废气、废水、废渣、粉尘、恶臭气体、放射性物质以及噪声振动、电磁波辐射等对环境的污染和危害。

  第二十五条新建工业企业和现有工业企业的技术改造,应当采用资源利用率高、污染物排放量少的设备和工艺,采用经济合理的废弃物综合利用技术和污染物处理技术。第二十八条排放污染物超过国家或者地方规定的污染物排放标准的企业事业单位,依照国家规定缴纳超标准排污费,并负责治理。水污染防治法另有规定的,依照水污染防治法的规定执行。等内容,要求学生要保护环境。

  三、课堂练习:

  1、下列函数中哪些是一次函数,哪些又是正比例函数

  8(1)y=-8x(2)y=(3)y=5x2+6(3)y=-0.5x-1

  2、汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围。y是x的一次函数吗?

  四、课时小结

  本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方

  法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性

  五、作业:

  P120第9题。

  一次函数教案 3

  一、复习目标

  知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。

  能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。

  情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

  教学重点与难点

  重点:根据不同条件求一次函数的解析式。

  难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。

  教法与学法

  教法分析:经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。由于是复习课,我采用边讲边练和问题教学的方式。

  学法指导:在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。另外,通过向学生展示我对本单元的'归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。

  二、教学过程

  (一)、知识回顾:由于是复习课,所以开门见山做课前练习。

  (二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。因此,我用“六点”来对于本单元进行复习:

  知识点

  1、一般形式:

  1、选择题:

  分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。

  知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()

  与Y轴交点是()

  知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。而题目又往往出这种知识点,因此我把这个知识点编成顺口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是当k>0,b>0是,直线经过一二三象限,以此类推。(课件中以表格的形式向同学展示)同学们很容易记住并理解,举一些例子加以说明:

  知识点4:求解析式:一般用特定系数法求函数的解析式,特定系数法的一般步骤是“设→代→解→答”。当然,在一些日常生活实际问题中,则可以根据题意直接列出解析式,这里应该说明:自变量的取值范围是函数解析式的一部分,但具体求法不作要求。

  知识点5:求交点、求面积:指一次函数的图象与坐标轴的交点坐标以及两直线交点坐标的求法。直线y=kx+b与x轴的交点坐标,与y轴的交点坐标是(0,b),这里要再次向学生解释一下,交点坐标是怎样得出来的。两条直线的交点坐标的求法:是将两直线的解析式联成一个二元一次方程组,解这个方程组,将它的解写成一个有序实数对,就是两直线的交点坐标。

  求面积6:平移:

  (三)、堂堂清:

  (四)、小结:本节课归纳的“六个点”不是互相孤立,而是互相依托,互相渗透的,如求直线与坐标轴围成的直角三角形的面积时,需要先求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式。由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。

  (五)、布置作业:作业的布置应精心设计,体现分层教学和因材施教的原则。

  1、必做题:配套的试卷1张。

  2、选做题:课堂上布置的思考题。

  一次函数教案 4

<title>  从不同方向看</title>

  一、教学目标

  知识与技能目标

  1.初步了解作函数图象的一般步骤;

  2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

  3.初步了解函数表达式与图象之间的关系。

  过程与方法目标

  经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

  情感与态度目标

  1.在作图的过程中,体会数学的美;

  2.经历作图过程,培养学生尊重科学,实事求是的作风。

  二、教材分析

  本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法。两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

  教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

  教学难点:一次函数及图象之间的对应关系。

  三、学情分析

  函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

  四、教学流程

  一、复习引入

  下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

  二、新课讲解

  把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

  下面我们来作一次函数y = x+1的图象

  分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。

  解:列表:

  描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

  连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

  三、做一做

  (1)仿照上例,作出一次函数y= ?2x+5的图象。

  师:回顾刚才的作图过程,经历了几个步骤?

  生:经历了列表、描点、连线这三个步骤。

  师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

  师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

  (2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

  四、议一议

  (1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?

  (2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

  (3)一次函数y=kx+b的'图象有什么特点?

  一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

  例1做出下列函数的图象

  练一练:作出下列函数的图象:

  (1)y= ?5x+2, (2)y= ?x

  (3)y=2x?1,(4)y=5x

  五、课堂小结

  这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。

  六、课后练习

  随堂练习习题6.3

  五、教学反思

  本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

  一次函数教案 5

  一、创设情境

  问题画出函数y=的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y始终大于零?

  二、探究归纳

  问一元一次方程=0的解与函数y=的图象有什么关系?

  答一元一次方程=0的解就是函数y=的'图象上当y=0时的x的值.

  问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

  答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.

  三、实践应用

  例1画出函数y=-x-2的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y始终大于零?

  解过(-2,0),(0,-2)作直线,如图.

  (1)当x=-2时,y=0;

  (2)当x<-2时,y>0.

  例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

  解设y1=2x-5,y2=-x+1,在直角坐标系中画出这两条直线,如下图所示.

  两条直线的交点坐标是(2,-1),由图可知:

  (1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

  (2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

  四、交流反思

  运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

  五、检测反馈

  1.已知函数y=4x-3。当x取何值时,函数的图象在第四象限?

  2.画出函数y=3x-6的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y大于零?

  (3)x取什么值时,函数值y小于零?

  3.画出函数y=-0.5x-1的图象,根据图象?

  一次函数教案 6

  一、内容和内容解析;

  1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像

  2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

  二、目标和目标解析

  1、教学目标的确定

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

  知识目标

  (1)能用两点法画出一次函数的图象。

  (2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

  能力目标

  (1)通过操作、观察,培养学生动手和归纳的能力。

  (2)结合具体情境向学生渗透数形结合的数学思想。

  情感目标

  (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

  2、教学重点、难点

  用两点法画出一次函数的.图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

  三、教学问题诊断分析

  1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

  2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

  3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  四、教学支持条件分析

  恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  五、教学过程设计

  设疑,导入新课(2分钟)

  通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题)

  一次函数教案 7

  学习目标:(学习重点)

  1.能根据k、b的符号说出一次函数y=kx+b的图象(直线)的大致情况.

  2.理解并掌握一次函数y=kx+b的性质

  补充例题:

  例1.在同一直角坐标系中画出下列函数的图象

  ①y=2x-4y=12x+1

  观察直线y=2x-4:

  (1)图象与x轴的交点坐标是,与y轴的交点坐标是

  (2)图象经过这些点:(-3,);(-1,);(0,);(,-2);(,2)

  (3)当x的值越来越大时,y的值越来越

  (4)整个函数图象来看,是从左至右(填上升或下降)

  (5)当x取何值时,y>0?

  ②y=-2x+2y=-13x-1

  观察直线y=-2x+2:

  (1)图象与x轴的交点坐标是,与y轴的交点坐标是

  (2)图象经过这些点:(-3,);(-1,);(0,);(,-4);(,-8)

  (3)当x的值越来越大时,y的值越来越

  (4)整个函数图象来看,是从左至右(填上升或下降)

  (5)当x取何值时,y<0?

  小结:一次函数y=kx+b有下列性质:1.当k>0时,y随x的增大而______,这时函数的图象从左到右_____;当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

  2.当b>0时,这时函数的图象与y轴的交点在______

  当b>0时,这时函数的图象与y轴的交点在_____.

  当b=0时,这时函数的图象与y轴的交点在_____.

  3.当k>0,b>0时,一次函数图像经过______________象限.

  当k>0,b<0时,一次函数图像经过______________象限.

  当k<0,b>0时,一次函数图像经过______________象限.

  当k<0,b<0时,一次函数图像经过______________象限.

  当k>0,正比例函数图像经过______________象限.

  当k<0,正比例函数图像经过______________象限.

  补充例题:

  例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.

  (2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()

  例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.

  (2)若k<0,b>0,则直线y=kx+b的图象经过第___________象限.

  (3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.

  例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?

  例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的'图象与y轴的交点在x轴下方,求m的取值范围.

  课后续助:

  一、填空题:

  1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.

  2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.

  3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.

  4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.

  5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.

  (2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.

  (3)一次函数y=kx+1的图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)

  (4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.

  (5)写出一个y随x的增大而减少的一次函数_______.

  二、选择题:

  1.直线y=x+1不经过的象限是( )

  A.第一象限B.第二象限C.第三象限D.第四象限

  2.下列函数中,y随x的增大而增大的函数是()

  A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2

  3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1

  4.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则它的大致图象是()

  A,B,C,D

  三、解答题:

  1.已知一次函数y=(p+8)x+(6-q).

  ①p、q为何值时,y随x的增大而增大?

  ②p、q为何值时,函数与y轴交点在x轴上方?

  ③p、q为何值时,图象过原点?

  2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.

  3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.

  4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.

  (1)求m的值;

  (2)当x取何值时,0<y<4?

  一次函数教案 8

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的.y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题

  一次函数教案 9

  一、教学目标:

  1、知道一次函数与正比例函数的定义.

  2、理解掌握一次函数的图象的特征和相关的性质;

  3、弄清一次函数与正比例函数的区别与联系.

  4、掌握直线的平移法则简单应用.

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2. 一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

  基础训练:

  1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

  2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

  3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

  4.已知正比例函数 y =(3k-1)x,若y随

  x的增大而增大,则k是: 。

  5、过点(0,2)且与直线y=3x平行的直线是: 。

  6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

  7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

  8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

  四、教学反思:

  教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的`刺激活动,学生没有保持住持久的紧张状态。

  课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

  从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

  一次函数教案 10

  教材分析

  《一次函数》是人教版的义务课程标准实验教科书数学八年级上册第十九章的内容。本节内容是在学生学习函数的概念基础上进行学习的。教材首先是通过比较观察,然后找出所列方程的共同特点,进而确定一次函数的概念,并应用一次函数去解决一些实际问题。

  通过对一次函数的概念的学习,加深巩固对函数概念的理解,是学习一次函数的图象和性质的前提。作为一种有效的数学模型,函数在现实生活中有着广泛的应用,而一次函数在现实情境和数学问题情境中的应用是学习的重点,熟练掌握一次函数的性质和应用,对今后学习反函数、二次函数会有直接的影响。

  学情分析

  学生在对代数式和函数认识的基础上学习的,因此为学习本节奠定了良好的基础。因为学生对一些具有规律性的问题充满了探求的欲望,同时也具备了一定的归纳、总结、表达的能力,基本上能够够在教师的引导下表达自己的观点和思想,他们同时具有较强烈的好奇心和求知欲,所以学习过程中教师要细心了解学生的内心世界,关注每一个变化,努力调动他们的学习积极性,要善于发现他们在学习过程中的闪光点,及时给予鼓励性的和引导。

  教学目标

  1、知道一次函数与正比例函数的意义。

  2、能写出实际问题中正比例关系与一次函数关系的解析式。

  3、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

  教学重点和难点

  教学重点:对于一次函数与正比例函数概念的理解。

  教学难点:根据具体条件求一次函数与正比例函数的解析式

  教学过程

  一、创设情景:

  1、复习前四节所学内容。

  2、做小游戏:

  在一个自然长度为3厘米的弹簧秤下挂上不同重量的物体(已准备好砝码),观察弹簧长度的变化,把测得的数据填入表中相应的`空格。

  此实验由一位学生协助老师量出弹簧的长度,并填入表内空格。要求学生观察表格的数据并找出其中规律。并尝试列出物体重量x(千克)与弹簧长度y(厘米)的关系?

  学生积极动脑、思考并回答。

  y=3+0.5 x

  通过实验来引入新课,吸引了学生的注意力,激发学生的求知欲,也能让学生体会到数学知识来源生活。

  二、新授

  [活动1]

  (1)某登山队大本营所?在地的气温为5℃,海拔每升高1 km气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

  教师引导学生思考、分析,列出解析式,并板书。

  学生自己分析后同桌之间互相交流,并回答,教师做以纠正。

  通过实际问题的解决,激发学生学习兴趣,同时师生共同分析,得出函数解析式,为下面的问题的解决提供必要的思路,启发学生思考。

  [活动2]

  下列问题中的变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?

  (2)有人发现,在20~50℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;

  (3)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减去常数105,所得差是G的值;

  (4)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x分的计时费(按0.1元/分收取);

  (5)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化;

  教师提出问题,学生合作交流过程中,教师要参与到学生的活动中,发现个别问题及时解决,最后,在聆听学生后,给予积极的评价、鼓励和纠正。

  学生先独立思考、分析、列出解析式,然后前后桌同学交流,总结出本组见解。

  学生独立思考、分析、完成后,再进行组内交流,能够有自己思考的过程,有利于学生数学思维的形成,同时,也为合作交流奠定基础,只有学生先思考了,交流时才有话可说;通过多道题目学生才更容易找到一次函数形式上的共同特点,利于学生归纳、总结概念。

  [活动3]

  讨论

  (1)这些函数在形式上有什么共同特点?

  (2)一次函数概念:

  教师积极引导学生发现在上述等式等号的右边都是关于一个字母的一次式。并且函数的形式是一样的。并归纳出一次函数的概念。

  在学生思考、回答的基础上,教师要进行整理重点内容,并板书。

  教师提出问题,合作交流过程中,教师要

  参与到学生的活动中,发现个别问题及时解决,最后,在聆听学生后,给予积极的评价、鼓励和纠正。

  学生先独立思考、分析,然后与同桌、前后桌讨论,最后派代表阐述本组见解,鼓励学生积极参与,合作交流,用自己的语言表达自己对问题的理解,发展学生的语言表达能力。同时,交流的过程中体会概念生成的过程,对概念能进一步深化

  三、随堂练习:

  1、(1)若y =5x 3m-2是正比例函数,则m =多少(2)若是一次函数,则m = 多少

  2、课本114页练习题

  教师引导学生做题,并讲解分析。

  学生先独立思考,做题,并同桌之间交流,最后,在老师的指导下进一步理解。以上两个问题设计从易到难,符合学生的认知规律,通过这两个问题主要是想让学生进一步掌握一次函数和正比例函数对比例系数和常数项的要求

  四、归纳小结

  教师启发学生思考回答下列问题,教师补充。

  通过本节课的学习,让学生谈谈本节的收获和疑惑?

  让学生自己小结,活跃课堂气氛,做到全员参与,加深对概念的理解,强化了重点,内化了知识,培养了能力。

  五、布置作业

  课本120页

  习题14.2第3题

【一次函数教案】相关文章:

一次函数复习课教案03-28

《一次函数》教学反思06-10

一次函数复习教学反思03-24

二元一次方程与一次函数教案04-01

《一次函数图象与性质》说课稿07-06

一次函数人教版数学八年级上册教案09-30

《一次函数性质及其图象》复习说课稿07-06

八年级数学下册《一次函数》教学反思04-20

《一次函数与一元一次不等式》教学反思01-15