- 相关推荐
求两个数的最大公约数五年级教案
作为一位杰出的老师,很有必要精心设计一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编收集整理的求两个数的最大公约数五年级教案,欢迎阅读与收藏。
求两个数的最大公约数五年级教案1
教学内容:求两个数的最大公约数
教学目标;
使学生理解求两个数的最大公约数的算理,学会求两个数的饿最大公约数的饿方法。
教学过程:
一、复习
1、什么叫公约数,最大公约数和互质数,举出一组互质数
2、写出36的约数,60的约数,36和60的公约数,36和60的最大公约数
二、教学新课
1、提出问题:求两个数的最大公约数。用上面的方法求两个数的最大公约数,很不方便,有没有更简便的方法呢,这就是我们今天要学的内容;
2、教学例3
我们可以这样想:把36和60分别分解质因数,把他们的最大公约数12也分解质因数,观察以下,他们有什么联系?
观察、比较、议论:
(1)36和60的公有约数是几,全部公有质因数的连乘的.积是多少?
(2)36和60的公有质因数与他们最大公约数12的质因数相比,有什么发现?
(3)用短除法求最大公约数。
(4)引导学生观察,比较,议论。
3、巩固练习
4、试一试求下面两题的最大公约数。
5、教学例4
(1)求出下面各组数的最大公约数
(2)引导学生探求观察思考
观察上面三组数和他们各自的最大公约数,发现什?
6、教学例5
(1)求出下面各组数的最大公约数
(2)引导学生观察、探索、发现这些数的最大公约数
(3)教师学生共同
(4)练一练
(5)求下面各组数的最大公约数
三、布置作业
反思:我认为这几点我做的不好:
1、没有让学生真正懂得为什么两个数全部共有质因数连乘的积就是这两个数的最大公约数。所以在下面的练习中学生知识照搬照抄。缺乏灵活性。
2、对于有特点的两组数:互质数和约数关系时的教学缺乏举例,与学生的自我思考。
求两个数的最大公约数五年级教案2
教学要求
①使学生理解公约数、最大公约数、互质数的概念。
②使学生初步掌握求两个数最大公约数的一般方法。
③培养学生抽象、概括的能力和动手实际操作的能力。
教学重点理解公约数、最大公约数、互质数的概念。
教学难点理解并掌握求两个数的最大公约数的一般方法。
教学用具投影仪等。
教学过程
一、创设情境
填空:①12÷3=4,所以12能被4()。4能()12,12是3的(),3是12的()。②把18和30分解质因数是,它们公有的质因数是()。③10的约数有()。
二、揭示课题
我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究
1.小组合作学习
(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?
②1、2、4是8和12的什么?
③其中最大的一个是几?知道叫什么吗?
(3)归纳并板书
①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
813
24612
8和12的公约数
(4)抽象、概括。
①你能说说什么是公约数、最大公约数吗?
②指导学生看教材第66页里有关公约数、最大公约数的概念。
(5)尝试练习。
做教材第67页上面的“做一做”的第1题。
2.学习互质数的概念
(1)找出下列各组数的公约数来:5和78和912和251和9
(2)这几组数的公约数有什么特点?
(3)这几组数中的两个数叫做什么?(看书67页)
(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)
3.学习例2
(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。
(2)复习的第2题,我们已将18和30分解质因数(如后)18=2×3×330=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))
⑤最大公约数6是怎样得出来的?
(4)归纳板书。
18和30的最大公约数6是这两个数全部公有质因数的乘积。
(5)求最大公约数的'一般书写格式。
为了简便,我们把两个短除式合并成一个如:1830
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最大公约数?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求最大公约数的方法。
①谁能说说求最大公约数的方法。
②引导学生看教材第68页求两个数的最大公约数的方法。
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12*题。
求两个数的最大公约数五年级教案3
教学目标
(1)掌握两个数的最大公约数的质因数特征,能正确地求两个数的最大公约数。
(2)能较快地说出倍数关系与互质关系的两个数的最大公约数。
教学重点、难点
重点:用短除法求两个数的最大公约数
难点:判断互质数
教具、学具准备
教学过程
一、复习准备
1、口答:下列各数中,哪些数是约数2?哪些数是约数3?哪些有约数5?
10、12、9、20、18457235
2、下列各数中,哪些是互质数?
4和67和81和105和119和63和12
学生回答后提问:谁能说一说什么叫互质数?
3、提问:什么叫公约数?最大公约数?
练习:
36的公约数有:
60的公约数有:
36和60的公约数有:
(1)学生全体笔练
(2)反馈:师生共同作简要评价。
4、谈话引入:上节课,我们学会了用找出每个数的约数的方法来求两个数的最大公约数,那么,除此外,还有没有更简洁的方法来求两个数的最大公约数呢?这就是本节课我们要学生的内容。(揭示课题)
二、教学新识
1、教学用短除法求最大公约数
(1)探求特征:将36、60分解质因数。
36=2×2×3×3
60=2×2×3×5
12=2×2×3
分解以后观察:
12的质因数与36、60的质因数有什么联系?说明什么?(学生回答后教师36和60的公有质因数用方框框住,并用↓与12的质因数建立对应关系?如上图)
谁能把你的发现用自己的话说出来。
结论:求两个数的最大公约数,可以先把这两个数分解质因数,然后把的它们全部公有质因数乘起来,就是最大公约数。
(2)用你的发现求54和72的最大公约数。
(全体笔练、两人板演)
54=2×3×3×3
72=2×2×2×3×3
54和72的最大公约数是:2×3×3=18(学生练习后检查板演、反馈评价)
(3)巩固练习
A、口答:
12=2×2×3
18=2×3×3
12和18的最大公约数是2×3×3=18(学生练习后检查板演,反馈评价)
10=2×514=2×7
10和14的最大公约数。()
B、笔练:求44和66,18和24的最大公约数。(两人做在投影片上)
C、反馈矫正。
(4)教学用简便方法求最大的公约数
A、为了方便,通常用P.48的方法求最大公约数:(教师边讲边板书)
36和60的`最大公约数是:2×2×3=12
......把所有除数连乘
或:(36,60)=2×2×3=12
B、练习:课本P.51试一试。
提问:这种方法和刚才的方法有什么本质上的关系?
学生回答后明确:实际上是把两个数同时分解质因数,用两个数公有的质因数去除,所以除数之积就是最大公约数。
C、巩固练习:求42和54、39和65的最大公约数。
2、教学求特殊关系的两数的最大公约数。
(1)求下面各组的最大公约数
4和209和3628和7
A、学生练习
B、反馈讨论(学生汇报结果,教师板书)
(4,24)=4(9,36)=9(28,7)=7
C、观察每组数的最大公约数有什么特点?每组中的两个数又有什么关系?
你发现了什么?(用自己的话说一说)
D、规律应用:下面每组数的最大公约数各是几?(口答)
45和1536和1842和18
(2)求下面各组数的最大公约数
9和105和2117和8
A、学生练习并同桌讨论:每组的最大公约数有什么规律?每组中两个数又有什么特点?
B、反馈讨论,明确规律。
C、口答下列每组的最大公约数
3和1124和89和1425和2613和17
3、综合练习:求下面每组数的最大公约数。
20和2516和3528和36
6和1418和5485和115
(1)学生练习。
(2)反馈,效果检查。
三、课堂总结
提问:
1、本节课学习可什么内容?
2、一般情况下怎样求两个数的最大公约数?
3、倍数关系与互质关系的最大公约数各有什么特点?
四、作业《作业本》
从繁琐到简单,从一一列举到短除法,从一般到特殊,逐步引导学生掌握求两个数的最大公约数的方法。
【求两个数的最大公约数五年级教案】相关文章:
最大公约数教案设计10-08
《最大公约数》教案(精选11篇)06-20
求比一个数少几的数教案03-03
求比一个数多几的应用题教案04-15
《求一个数是另一个数几倍》教学反思02-06
《求比一个数多几的应用题》说课稿11-28
求一个数的几倍是多少教学反思04-07
二年级数学教案:求一个数是另一个数的几倍04-03