圆的周长教案

时间:2024-09-30 22:51:02 教案 我要投稿

圆的周长教案合集七篇

  作为一名默默奉献的教育工作者,通常会被要求编写教案,借助教案可以更好地组织教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的圆的周长教案7篇,希望对大家有所帮助。

圆的周长教案合集七篇

圆的周长教案 篇1

  教学内容:

  教学目标:

  1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

  2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

  3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

  教学重点:理解圆周率,能计算圆的周长。

  教学难点:探索并理解圆的周长与直径的商为定值。

  教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

  教学策略:自主探索、讨论交流、点拨与练习

  教学程序:

  一、激活目标

  出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

  二、活动建构

  1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

  2、介绍圆周率的由来。

  任意一个圆的`周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

  组织学生阅读资料,谈感受。

  3、推导出:c=πd或c=2πr

  4、计算花坛的周长,解决相关问题。

  圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

  三、解释应用

  一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

  四、反馈测评

  1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

  15厘米

  A

  B

  2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

  3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

  五、课堂小结

  我的最大收获是什么?我有什么遗憾?我有什么疑问?

  希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

圆的周长教案 篇2

  【教学目标】:

  1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

  2、能运用圆的周长的计算公式解决一些简单的数学问题。

  3、初步体会转换思想,学到一些解决实际问题的数学方法。

  【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

  【教学难点】:理解圆周率的意义

  【教学难点】:教师:课件(U盘)、表格、卷尺。

  学生:线或卷尺、计算器。

  【教学过程】:

  (1)教学准备:

  1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

  8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

  6是3的( )倍。 20是5的( )倍。

  22是7的( )倍。

  2、把倍数关系句改写成等式。

  ①6是3的2倍 ( )

  ②20是5的4倍。 ( )

  ③22是7的22/7 倍。( )

  ④C是d的a倍。( )

  3、 数学是一门关系学

  正方形的周长与边长的关系

  C=4a

  正方形的周长 是 边长的4倍

  (2)新授过程。

  自学课本第62页,思考

  1、什么是圆的周长?

  答:围成圆的曲线的长是圆的周长。

  2、直观认识圆的'周长。演示动画。

  3、你认为 圆的周长与正方形的周长最大的不同在哪里?

  4、课本里介绍了几种度量圆的周长的方法?

  围绳法 滚动法

  5、动画演示滚动法

  6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长

  的大小与什么有关系?

  7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

  8、动手操作验证猜想

  其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

  π是一个无限不循环小数。

  π=3.141592653……

  在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

  9、投影展示π的前900位,体会π的小数数位的庞大。

  10、圆周率前6位谐音记忆

  π=3.14159…… 山 巅一寺一壶酒 巅 diān

  11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

  c=2πr。

  12、对比 : c=4 a c=πd

  (三)知识应用。求下面圆的周长

  (四)课堂作业。《课本》P65 练习十四 1题、2题

圆的周长教案 篇3

  教学内容:

  圆的周长的综合练习

  教学目标:

  通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

  教学重点:

  理解圆的半径、直径、周长之间的`关系

  教学难点:

  能运用知识解决一些实际问题

  教学过程:

  一、揭示课题

  今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

  板书课题:圆的周长

  二、练习指导

  基本练习(口答)

  ⑴在同一个圆内,所有的半径( ),所有的直径( ),直径是半径的( ),半径是直径的( )。

  ⑵( )决定圆的位置,( )决定圆的大小。

  ⑶什么是半径?什么是圆的直径?

  ⑷圆的周长总是它直径的( )倍,它是一个固定不变的数,用字母( )表示。

  练习指导

  1、求下面各圆的周长

  d=2米 d=1.5厘米 r=6分米

  2、求下面各圆的直径

  C=28.26厘米 C=50.24米

  3、求下面各圆的半径

  C=12.56米 C=314厘米

  以上几题均由学生板演,其余齐练

  全班讲评,订正

  三、解决实际问题

  1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

  2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

  3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

  ①他一分钟可行驶多少米?

  ②他要通过2180米长的大桥,大约需要几分钟?

  四、课终小结

  今天我们练习了什么?你有什么收获?

圆的周长教案 篇4

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  求圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4 5 8

  2、求出下面各圆的周长。

  C=d c=2r

  3.142 23.144

  =6.28(厘米) =83.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=d C=2r

  (3)根据上两个公式,你能知道

  直径=周长圆周率 半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m 求:d=?

  解:设直径是x米。

  3.773.14 3.14x=3.77

  1.2(米) x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的'铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米 R=c(2) 求:r=?

  解:设半径为x米。

  3.142x=1.2 1.223.14

  6.28x=1.2 = 0.191

  x=0.191 0.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  (1)3.148

  (2)3.1482

  (3) 3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)

  45分钟走了多少厘米? 125.6 =94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、 作业。

  P65-66 第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

圆的周长教案 篇5

  教学内容:九年义务教育人教版第11册

  教学目标:

  1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

  2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

  3、培养学生情感,使学生受到爱国主义教育。

  教学重点:推导圆周长的计算公式。

  教学难点:理解圆周率的意义。

  教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

  教学过程:

  一、启发

  1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

  2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

  揭示课题。(板书:圆的周长)

  二、探究

  1、观察:看屏幕上的圆,说一说什么叫圆的周长?

  2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

  3、比一比:拿出两个大小不同的圆形纸片。

  哪个圆的周长长一些?

  4、量一量:(分小组合作)

  学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

  5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

  板书: 周长

  ○ 12cm多一些

  ○ 31cm多一 些 ○ 47cm多一些

  ② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

  ③(课件演示)绳测法和滚动法的操作过程;

  ④讨论:能用这方法测量出这个圆的周长吗?

  (教师演示)拿一根栓了重物的绳子在空中抡了一圈。。

  如何才知道它的周长呢 ?

  6、①猜一猜: 圆的周长和圆的什么有关系?

  ②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的'周长和它的直径有关系)

  7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

  ②学生分成四人小组,测量、计算、讨论圆和直径的关系。

  ③小组汇报测量结果。

  板书: 周长 直径

  ○ 12cm多一些 4cm

  ○ 31cm多一 些 10cm ○ 47cm多一些 15cm

  结论:圆的周长是直径的3倍多一些。

  ④课件出示:验证学生发现的规律是否具有普遍性。

  ⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。

  6、介绍圆周率,结合进行爱国主义教育。

  ①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。

  ②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)

  ③对学生进行爱国主义思想教育。

  7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

  (圆的周长=直径×圆周率)(C=∏D或C=2∏r)

  三、知

  1、让学生把测量的三个圆用公式计算出三个圆的周长来。

  2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

  (绳子的长度就是圆的半径)

  3、抢答:①D=1分米,C= ?

  ②r=1厘米,C=?

  ③C=12。56米,D=?

  4、出示例1,让学生独立计算。

  5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

  四、评议

  1、本节课你学到了什么?有什么体会?有何感受?

  2、本节课学习主要采用了什么方法?

  3、本节课学习后对你生活有什么帮助?

  4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

圆的周长教案 篇6

  一、指导思想与理论依据:

  《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

  二、教材及学情分析:

  教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

  三、教学目标、重点及难点:

  1、知识和技能:

  使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

  2、过程与方法:

  (1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

  (2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

  3、情感与态度:

  (1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

  (2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

  (3)在解决问题过程中,增强应用意识。

  教学重点:

  让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  教学难点:

  对圆周率的认识。

  教学准备:

  ⒈圆形物体实物,。

  ⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

  四、教法:

  1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

  2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

  五、主要教学环节与设计:

  通过以下环节教学本课:

  一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸

  六、教学过程:

  第一个环节:创设情境,初步感知师:

  哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

  生:求行驶多长的路程就是求圆形的周长。

  师:今天就来学习怎样计算圆的周长。

  此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

  第二个环节:合作交流、探究新知

  (一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

  1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

  2、分析比较长方形、正方形和圆的周长各有什么不同?

  3、指一指、描一描自己手中圆片的周长。

  设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

  (二)探究圆周长的计算方法

  圆周长计算公式的推导这一内容,我安排了三个环节:

  1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  预设的几种情况:

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绳子缠绕实物圆一周并拉直;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  小结:以上的几种方法都是要“化曲为直”。

  出示地球图片。

  如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

  设计意图:这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

  (1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

  师:圆的周长与它的什么有关呢?

  生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

  (2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

  师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  请同学们分组做个小实验,请利用手中的`学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

  小组汇报:

  生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

  师:通过计算你们发现了什么?

  生:每个圆的周长,都是它的直径长度的3倍多一些。

  追问:那么是不是所有的圆周长与它直径都有这种关系呢?

  最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

  师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

  生:圆周率。

  师:你对圆周率还有哪些了解?

  这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

  设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

  (3)得出结论师:你知道圆周长的计算方法了吗?

  生:知道。

  板书公式:C=πd,C=2πr

  设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

  第三个环节:实践应用,解决问题

  这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

  1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

  2、设计了三道有梯度的练习:①d=5米, C=?②r=5厘米 C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?

  ①π=3.14( )

  ②大圆的圆周率小于小圆的圆周率。( )

  ③圆的周长是它的半径的2π倍。( )

  意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

  第四个环节:畅谈收获,课外延伸作业:

  赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

  设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

  你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

  七、板书设计:

  圆的周长

  化曲为直 圆的周长÷直径=圆周率

  C÷d=π 3.14×20=62.8(英寸)

  C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

  C=2πr

圆的周长教案 篇7

  一、教学内容:

  《义务教育课程标准实验教科书数学》人教版六年级上册第62-64页《圆的周长》

  二、教材分析:

  本节课是学生在学习了长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识。这为学生认识、概括、归纳圆的周长提供了知识技能基础。在教法上,以“铺垫——探究新知——运用新知”为主线,又在各个环节中设置由浅入深、由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  三、设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  四、教学目标:

  1. 让学生知道什么是圆的周长。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育。

  五、教学重点:推导圆周长的计算公式,准确计算圆的周长。

  六、教学难点:理解圆周率的意义。

  七、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等。学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  八、教学过程:

  (一)、创设情境,引起猜想

  1、激发兴趣,引出课题

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。

  问:同学们,你认为这样的比赛公平吗?

  2、认识圆的周长

  (1).回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  (2).认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  【设计理念】播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基础

  3、讨论正方形周长与其边长的关系

  (1).我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  (2).怎样才能知道这个正方形的周长?说说你是怎么想的?

  (3). 那就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  【设计理念】正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  4、讨论圆周长的测量方法

  (1).讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  (2).反馈:(基本情况)

  <1>.“滚动”——把实物圆沿直尺滚动一周;

  <3>.“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (3).小结各种测量方法:(板书)转化曲 直

  (4).创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  (5).明确课题:

  今天这节课我们就一起来研究圆周长的计算方法。 (板书课题:圆的周长)

  【设计理念】教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间,又不断设置认知冲突,在遵循学生认知规律的前提下,有效地培养了学生思维的创造性。

  5、合理猜想,强化主体

  (1).请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论交流。

  (2).正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?向大家说一说你是怎么想的?

  (3).正方形的周长总是边长的4倍。再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  (4).小结并继续设疑

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  【设计理念】在学生已有的知识经验基础上,教师充分引导学生进行合理的`猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程中的主体地位。

  (二)、实际动手,发现规律

  1、分组合作测算

  (1).明确要求

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。(为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。)

  4、总结圆周长的计算公式

  (1). 如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长 =直径× 圆周率 用字母表示就是:C=πd

  (2). 如果知道圆的半径,又该怎样计算圆的周长呢 板书: C =2πr

  【设计理念】本环节选取一元硬币、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程,在理解圆周率意义的过程中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  (三)、巩固练习,形成能力

  1.判断并说明理由:π =3.14 ()

  2.选择:大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确的是:()

  a.大圆的圆周率大于小圆的圆周率,大圆的圆周率小于小圆的圆周率;

  b.大圆的圆周率等于小圆的圆周率。

  3.实际问题:我家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,我至少需要准备多长的花边?

  (四)、小结:通过今天的学习,你有什么收获?

  【设计理念】练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题抓住了新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学、用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  (五)、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近

  附:板书设计

  圆的周长

  意义:围成圆的曲线的长度叫做圆的周长

  测量: 化曲为直法:滚动、拉直

  圆周率:(字母π);计算取值:3.14。

  公式: 因为c÷d=π 所以c=πd 或c=2πr

【圆的周长教案】相关文章:

关于圆的周长教案圆的周长教案稿05-12

《圆的周长》教案11-21

圆的周长教案15篇03-25

小学数学圆的周长教案05-15

(精)《圆的周长》教案15篇06-22

《圆的周长》的说课稿05-16

圆的周长说课稿01-24

《圆的周长》说课稿03-21

[精选]圆的周长说课稿08-07

[优秀]《圆的周长》的说课稿05-17