分数除法教案

时间:2024-07-19 20:44:58 教案 我要投稿

分数除法教案模板汇总五篇

  作为一位杰出的教职工,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编为大家收集的分数除法教案5篇,仅供参考,大家一起来看看吧。

分数除法教案模板汇总五篇

分数除法教案 篇1

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的推导。

  教学难点:

  理解“÷”转化为“×”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程×时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1) 为1小时5个小时,所以,要算18××5,也就是18×。

  2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18×,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

  3)是的倒数,即的'倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15×( )10÷ =10×( )

  8÷=8×( ) ÷9=×( )

  2、列式计算。

  (1)一堆煤,每次用去 ,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业 练习八第1——4题。

分数除法教案 篇2

  教学目标:

  1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

  2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

  3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  多媒体课件、长方形纸等。

  教学过程:

  一、旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  二、创设情境,理解意义

  展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的'这部分占整张纸的几分之几。

  2、汇报

  三、大胆猜想

  学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

  四、再次探究

  1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

  2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  板书: 分数除法(二)

  除以一个整数(零除外)等于乘这个整数的倒数。

分数除法教案 篇3

  教学目标

  1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位“1”,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位“1”

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位“1”?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

  (3)全村耕地面积的. 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位“1”?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价× =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位“1”?数量间相等的关系式是什么?怎样列式?

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:分数除法应用题

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

分数除法教案 篇4

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

  7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

  2.口述表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是.

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的`分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

  2.用分数表示下列各式的商.

  4÷511÷1327÷35

  9÷913÷1633÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷47÷1216÷4925÷249÷9

分数除法教案 篇5

  教学目标:

  1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

  (1)吃了 是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的.重量-吃了的重量=剩下的重量

  (4)指名列出方程。 解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。 解:设航模小组有人。

  + =25

  (1+ )=25

  =25

  =20

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

【分数除法教案】相关文章:

《分数与除法》教案04-03

分数除法教案优秀11-21

《分数与除法的关系》教案07-27

分数与除法的关系教案12-05

分数除法教案15篇02-10

分数除法教案优秀[精]05-08

稍复杂的分数除法教案02-21

分数除法教案(精选16篇)01-07

有关分数除法教案4篇04-27

小学数学分数除法教案02-14