数学《完全平方公式》教案

时间:2024-09-19 19:19:40 俊豪 教案 我要投稿

数学《完全平方公式》教案(通用12篇)

  作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《完全平方公式》教案,仅供参考,欢迎大家阅读。

数学《完全平方公式》教案(通用12篇)

  数学《完全平方公式》教案 1

  1.能根据多项式的乘法推导出完全平方公式;(重点)

  2.理解并掌握完全平方公式,并能进行计算.(重点、难点)

  一、情境导入

  计算:

  (1)(x+1)2; (2)(x-1)2;

  (3)(a+b)2; (4)(a-b)2.

  由上述计算,你发现了什么结论?

  二、合作探究

  探究点:完全平方公式

  【类型一】 直接运用完全平方公式进行计算

  利用完全平方公式计算:

  (1)(5-a)2;

  (2)(-3-4n)2;

  (3)(-3a+b)2.

  解析:直接运用完全平方公式进行计算即可.

  解:(1)(5-a)2=25-10a+a2;

  (2)(-3-4n)2=92+24n+16n2;

  (3)(-3a+b)2=9a2-6ab+b2.

  方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.

  变式训练:见《学练优》本课时练习“课堂达标训练”第12题

  【类型二】 构造完全平方式

  如果36x2+(+1)x+252是一个完全平方式,求的值.

  解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.

  解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

  方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

  变式训练:见《学练优》本课时练习“课堂达标训练”第4题

  【类型三】 运用完全平方公式进行简便计算

  利用完全平方公式计算:

  (1)992; (2)1022.

  解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.

  解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

  (2)1022=(100+2)2=1002+2×100×2+4=10404.

  方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.

  变式训练:见《学练优》本课时练习“课堂达标训练”第13题

  【类型四】 灵活运用完全平方公式求代数式的值

  若(x+)2=9,且(x-)2=1.

  (1)求1x2+12的值;

  (2)求(x2+1)(2+1)的值.

  解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.

  解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

  (2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

  方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.

  变式训练:见《学练优》本课时练习“课后巩固提升”第9题

  【类型五】 完全平方公式的几何背景

  我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )

  A.a2-b2=(a+b)(a-b)

  B.(a-b)(a+2b)=a2+ab-2b2

  C.(a-b)2=a2-2ab+b2

  D.(a+b)2=a2+2ab+b2

  解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.

  方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.

  变式训练:见《学练优》本课时练习“课堂达标训练”第7题

  【类型六】 与完全平方公式有关的`探究问题

  下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.

  (a+b)1=a+b,

  (a+b)2=a2+2ab+b2,

  (a+b)3=a3+3a2b+3ab2+b3,

  则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

  解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.

  方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.

  变式训练:见《学练优》本课时练习“课后巩固提升”第10题

  三、板书设计

  1.完全平方公式

  两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  2.完全平方公式的运用

  本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。

  数学《完全平方公式》教案 2

  总体说明:

  完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

  本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

  一、学生学情分析

  学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

  学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

  二、教学目标

  知识与技能:

  (1)让学生会推导完全平方公式,并能进行简单的应用.

  (2)了解完全平方公式的几何背景.

  数学能力:

  (1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

  (2)发展学生的数形结合的数学思想.

  情感与态度:

  将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

  三、教学重难点

  教学重点:

  1、完全平方公式的推导;

  2、完全平方公式的应用;

  教学难点:

  1、消除学生头脑中的前概念,避免形成“相异构想”;

  2、完全平方公式结构的认知及正确应用.

  四、教学设计分析

  本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

  第一环节:学生练习、暴露问题

  活动内容:计算:(a+2)2

  设想学生的做法有以下几种可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正确做法;

  针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

  活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

  (a+2)2=a2+22,如果不将这种定式思维_就很难建立起一个正确的概念;这一环节的目的'就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

  第二环节:验证(a+2)2=a2–4a+22

  活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

  活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

  第三环节:推广到一般情况,形成公式

  活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

  第四环节:数形结合

  活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

  展示动画,用几何图形诠释完全平方公式的几何意义.

  学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

  活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

  第五环节:进一步拓广

  活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

  第六环节:总结口诀、认识特征

  活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

  ②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

  口诀:首平方,尾平方,首尾相乘的两倍在中央.

  活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

  第七环节:公式应用

  活动内容:例:计算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

  活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

  第八环节:随堂练习

  活动内容:计算:①;②;③(n+1)2–n2

  活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

  第九环节:学生PK

  活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

  活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

  第十环节:学生反思

  活动内容:通过今天这堂课的学习,你有哪些收获?

  收获1:认识了完全平方公式,并能简单应用;

  收获2:了解了两数和与两数差的完全平方公式之间的差异;

  收获3:感受到数形结合的数学思想在数学中的作用.

  活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

  第十一环节:布置作业:

  课本P43习题1.13

  数学《完全平方公式》教案 3

  教学目标

  1、使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2、理解完全平方式的意义和特点,培养学生的判断能力。

  3、进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

  4、通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

  教学重点和难点

  重点:运用完全平方式分解因式。

  难点:灵活运用完全平方公式公解因式。

  教学过程设计

  一、复习

  1、问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。

  2、把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式。

  请写出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解。

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的`式子就是完全平方式。

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1。

  答:(1)式是完全平方式。因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因为第三部分必须是2xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因为缺第三部分。

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25x4+10x2+1分解因式。

  分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

  例2 把1- m+ 分解因式。

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,则

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、课堂练习(投影)

  1、填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2、下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

  项式改变为完全平方式。

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3、把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1、(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2、(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3、(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小结

  运用完全平方公式把一个多项式分解因式的主要思路与方法是:

  1、首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。

  2、在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。

  五、作业

  把下列各式分解因式:

  1、(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2、(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3、(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4、(1) x -4x; (2)a5+a4+ a3。

  答案:

  1、(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2、(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3、(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  课堂教学设计说明

  1、利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  2、本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法。在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。

  数学《完全平方公式》教案 4

  一、内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的`计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

  角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

  和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  四、教育理念和教学方式:

  1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

  候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2、采用“问题情景—探究交流—得出结论—强化训练”的模式

  展开教学。

  3、教学评价方式:

  (1)通过课堂观察,关注学生在观察、总结、训练等活动中的主

  动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2)通过判断和举例,给学生更多机会,在自然放松的状态下,

  揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

  教学效果。

  五、教学媒体:多媒体六、教学和活动过程:

  教学过程设计如下:

  〈一〉、提出问题

  [引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答]分组交流、讨论

  (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

  (2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答]总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答]完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________,(m-n)2=_______________,

  (-m+n)2=____________,(-m-n)2=______________,

  (a+3)2=______________,(-c+5)2=______________,

  (-7-a)2=______________,(0.5-a)2=______________.

  2、判断:

  ()①(a-2b)2=a2-2ab+b2

  ()②(2m+n)2=2m2+4mn+n2

  ()③(-n-3m)2=n2-6mn+9m2

  ()④(5a+0.2b)2=25a2+5ab+0.4b2

  ()⑤(5a-0.2b)2=5a2-5ab+0.04b2

  ()⑥(-a-2b)2=(a+2b)2

  ()⑦(2a-4b)2=(4a-2b)2

  ()⑧(-5m+n)2=(-n+5m)2

  3、小试牛刀

  ①(x+y)2=______________;②(-y-x)2=_______________;

  ③(2x+3)2=_____________;④(3a-2)2=_______________;

  ⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

  ⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1)公式右边共有3项。

  (2)两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m)2=__________________________________

  (3)(-0.5m+2n)2=_______________________________

  (4)(3/5a-1/2b)2=________________________________

  (5)(mn+3)2=__________________________________

  (6)(a2b-0.2)2=_________________________________

  (7)(2xy2-3x2y)2=_______________________________

  (8)(2n3-3m3)2=________________________________

  〈六〉、学生自我评价

  [小结]通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业]P34随堂练习P36习题

  数学《完全平方公式》教案 5

  教学目标

  1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.

  2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.

  3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.

  教学重难点

  教学重点:

  1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.

  2、会运用公式进行简单的计算.

  教学难点:

  1、完全平方公式的推导及其几何解释.

  2、完全平方公式的结构特点及其应用.

  教学工具

  课件

  教学过程

  一、复习旧知、引入新知

  问题1:请说出平方差公式,说说它的结构特点.

  问题2:平方差公式是如何推导出来的?

  问题3:平方差公式可用来解决什么问题,举例说明.

  问题4:想一想、做一做,说出下列各式的结果.

  (1)(a+b)2(2)(a-b)2

  (此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)

  二、创设问题情境、探究新知

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.

  (1)四块面积分别为:

  (2)两种形式表示实验田的总面积:

  ①整体看:边长为的大正方形,S=;

  ②部分看:四块面积的和,S=.

  总结:通过以上探索你发现了什么?

  问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?

  问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的'意义是什么?请你用多项式的乘法法则加以验证.

  (教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)

  问题3:你能说说(a+b)2=a2+2ab+b2

  这个等式的结构特点吗?用自己的语言叙述.

  (结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)

  问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.

  总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.

  问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?

  语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.

  强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.

  三、例题讲解,巩固新知

  例1:利用完全平方公式计算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流总结:运用完全平方公式计算的一般步骤

  (1)确定首、尾,分别平方;

  (2)确定中间系数与符号,得到结果.

  四、练习巩固

  练习1:利用完全平方公式计算

  练习2:利用完全平方公式计算

  练习3:

  (练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)

  五、变式练习

  六、畅谈收获,归纳总结

  1、本节课我们学习了乘法的完全平方公式.

  2、我们在运用公式时,要注意以下几点:

  (1)公式中的字母a、b可以是任意代数式;

  (2)公式的结果有三项,不要漏项和写错符号;

  (3)可能出现①②这样的错误.也不要与平方差公式混在一起.

  七、作业设置

  数学《完全平方公式》教案 6

  教学目标:

  1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

  2.会推导完全平方公式,并能运用公式进行简单的计算;

  3.了解完全平方公式的几何背景. 教学重点:

  1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;

  2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算 教学过程:

  一、探索练习:

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)

  用不同的形式表示实验田的'总面积,并进行比较你发现了什么?

  观察得到的式子,想一想:

  (1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?

  (2)(a-b)2等于什么?小颖写出了如下的算式:

  (a-b)2=[a+(b)]2.

  她是怎么想的?你能继续做下去吗?

  由此归纳出完全平方公式:

  (a+b)2=a2+2ab+b2

  (a-b)2=a22ab+b2

  教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.

  例:(利用完全平方公式计算)

  (1)(2x-3)2

  解:(2x-3)2

  =(2x)2-2(2x)3+32

  =4x12x+9

  二、巩固练习:

  1.下列各式中哪些可以运用完全平方公式计算_______________

  (1) ;(2) ;

  (3) ;(4) .

  2.计算下列各式:

  (1) ;(2) ;(3) ;

  (4) ;(5) ;

  (6) .

  4.填空:

  (1) _____________;(2) ;

  (3) ; 三、提高练习:

  1.求 的值,其中

  2.若

  小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本P36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2

  对公式的真正理解有待加强.

  数学《完全平方公式》教案 7

  一、教学目标

  (1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

  (2)过程与方法目标;学生探究完全平方公式,体会数形结合。

  二、教学重点

  公式结构及运用。

  三、教学难点

  公式中字母AB的含义理解与公式正确运用。

  四、教具

  自制长方形、正方形卡片

  五、教学过程

  教师活动

  学生活动

  1、1、创设情景,提出问题,引入课题

  (1)想一想

  一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。

  (1)第一天,a个男孩去看老人,老人共给他们几块糖?

  (2)第二天,xx个女孩子去看望老人,老人共给他们多少块糖?

  (3)第三天,xx个孩子一起去看望老人,老人共给他们多少块糖?

  (4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

  1、1、学生四人一组讨论。

  填空:

  (1)第一天给孩子块糖。

  (2)第二天给孩子块糖。

  (3)第三天给孩子块糖。

  男孩子第三天多得块糖

  女孩第三天多得块糖。

  教师活动

  学生活动

  (2)做一做、请同学拼图

  a

  教师巡视指导学生拼图

  2、2、教师提问:

  (1)、大正方形边长?(2)每一块卡片的`面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?

  3、3、想一想

  (1)(a+b)用多项式乘法法则说明

  (2)(a-b)

  4、请同学们自己叙述上面的等式

  5、说一说,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  请同学们分清ab

  7、练一练

  (1)(2X-3Y)(2)(2XY-3X)

  8、试一试(a+b+c)

  作业:P1351、2

  学生2人一组拼图交流

  2、学生观察思考

  (1)大正方形边长?

  (2)四块卡片的面积分别是

  (3)大正方形的总面积是多少?

  3、(1)学生运用多项式乘法法则推导

  (a+b)=a+2ab+b说出每一步运算理由

  (2)学生自己探究交流

  4、学生用语言叙述公式

  5、师生共同a、b对应项教师书写

  6、学生独立完成练一练展示结果

  7、学生四人一组讨论交流

  8、有兴趣的同学可以探

  数学《完全平方公式》教案 8

  课题教案:

  完全平方公式

  学科:

  数学

  年级:

  七年级

  1内容本节课的主题:

  通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  1.1以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  1.2用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

  2教学目标

  2.1知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解(a+b)2=a2+2ab+b2的几何背景。

  2.2技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。

  2.3情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

  3教学重点

  完全平方公式的准确应用。

  4教学难点

  掌握公式中字母表达式的意义及灵活运用公式进行计算。

  5教育理念和教学方式

  5.1教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自我调适,自我选择。

  学生是学习的`主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  5.2采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。

  6具体教学过程设计如下:

  6.1提出问题:[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?

  (x+3)2=,(x-3)2=,这些式子的左边和右边有什么规律?再做几个试一试:

  (2m+3n)2=,(2m-3n)2=

  6.2分析问题

  6.2.1[学生回答]分组交流、讨论多项式的结构特点

  (1)原式的特点。两数和的平方。

  (2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  6.2.2[学生回答]总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  6.2.3、[学生回答]完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3运用公式,解决问题

  6.3.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=,(m-n)2=,(-m+n)2=,(-m-n)2=,6.3.2小试牛刀

  ①(x+y)2=;②(-y-x)2=;

  ③(2x+3)2=;④(3a-2)2=;

  6.4学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?

  (1)公式右边共有3项。

  (2)两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  6.5[作业]P34随堂练习P36习题

  数学《完全平方公式》教案 9

  一、教学目标

  【知识与技能】

  能够运用完全平方公式对简单的多项式进行因式分解

  【过程与方法】

  通过对实例的探究与合作,锻炼公式推导与总结能力

  【情感态度与价值观】

  在合作探究中,体会到数学学习的'乐趣,加强交流合作能力

  二、教学重难点

  【教学重点】

  完全平方公式

  【教学难点】

  完全平方公式的推导过程与应用

  三、教学过程

  (1)情景设置,设疑导入

  老师展示正方形广场图片,并告知已知条件:边长为a的正方形广场两个邻边有5米宽的道路,形成一个较大的正方形广场,尝试用不同方法求解整个广场(包括道路)的大小。

  预设:①(a+5)(看作一个整体)

  ②a+5+2×5×a(看作几个部分)

  (2)师生合作,新课教学

  由学生板书得出等式:(a+5)=a+5+2×5×a,提出问题:如果将5米宽,换成b米宽又能得到什么呢?(小组交流讨论)

  得出结论:

  进行证明:

  得到完全平方公式,记忆口诀:首平方,尾平方,首尾两倍放中央。

  (3)巩固提升,深化新知

  (4)小结作业,及时反思

  小结:请同学们谈一谈今天这节课的收获:

  1.学会了完全平方公式

  2.学会了简易计算平方式的能力

  3.提高了与同学们合作探究的能力,体会到了合作的乐趣

  作业:

  公式拓展:a+b=(a+b)+()

  91=()

  及时复习巩固完全平方公式,并在生活中找一找完全平方公式的运用

  数学《完全平方公式》教案 10

  一、教学目标

  1.理解完全平方公式的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的方法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与完全平方公式进行计算.

  (三)解决办法

  加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤

  (一)明确目标

  本节课重点学习完全平方公式及其应用.

  (二)整体感知

  掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程

  1.计算导入;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便方法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  方法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,(1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的.面积为____________________,Ⅲ的面积为______________,Ⅰ、Ⅱ、Ⅳ的面积和为____________,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用完全平方公式来计算,即

  【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1 运用完全平方公式计算:

  ①   ②   ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用完全平方公式计算:

  (1)   (2)   (3)

  (4)   (5)   (6)

  (7)   (8)   (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用完全平方公式计算:

  (l)  (2)  (3)  (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为什么?

  与 相等吗?为什么?

  学生活动:观察、思考后,回答问题.

  【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l)   (2)

  (3)  (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】 这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的完全平方公式.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业

  P133 1,2.(3)(4).

  数学《完全平方公式》教案 11

  一、教材分析:

  (一)教材的地位与作用

  本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

  (1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

  (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

  (3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

  (二)教学目标的确定

  在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

  1、知识目标:

  理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

  2、能力目标:

  渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

  3、情感目标:

  培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

  (三)教学重点与难点

  完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

  本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

  本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

  二、教学方法与手段

  (一)教学方法:

  针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

  采用小组讨论,大组竞赛等多种形式激发学习兴趣。

  (二)教学手段:

  利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

  (三)学法指导:

  在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

  三、教材处理

  根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的`平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

  四、教学程序

  教 学 过 程

  设计意图

  一、创设情境,引出课题

  如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

  a

  若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

  a 10

  引导学生利用图形分割求面积。

  另一方面:正方形

  10 10a 102 面积为(a+10)2, 所以:

  (a+10)2=a2+20a+102

  a a2 10a

  a 10

  b ab b2 把10替换为b,(a+b)2=a2+2ab+b2

  a a2 ab 提出课题

  a b

  通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

  (根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

  问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。

  对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触

  二、交流对话,探求新知

  1、推导两数和的完全平方公式

  计算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

  ①算式:两数和的平方

  ②积:两个数的平方和加上这两个数积的2倍

  3、语言叙述

  (a+b)2=a2+2ab+b2用语言如何叙述

  4、公式(a-b)2=a2-2ab+b2教学

  ①利用多项式乘法 (a-b)2=(a-b)(a-b)

  ②利用换元思想 (a-b)2=[a+(-b)]2

  ③利用图形

  b

  a

  (a-b) b

  a

  5、学生总结、归纳:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

  6、公式中的字母含义的理解。(学生回答)

  (x+2y)2是哪两个数的和的平方?

  (x+2y)2=( )2+2( )( )+( )2

  (2x-5y)2是哪两个数的差的平方?

  (2x+5y)2=( )2+2( )( )+( )2

  变式 (2x-5y)2可以看成是哪两个数的和的平方?

  利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

  组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

  由学生对公式

  (a+b)2=a2+2ab+b2进行口头语言叙述。

  (1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。

  使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”

  加深学生对公式中的字母含义的理解,明确字母意义的广泛性

  三、整理新知形成结构

  1、完全平方公式并分析公式左右的特征。

  2、换元的基本想法

  四、应用新知,体验成功

  1、例1教学:用完全平方公式计算

  (1)(a+3)2 (2)(y-)2 (3)(-2x+t)2 (4)(-3x-4y)2

  学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方

  提出以下问题:

  (1)可否看成两数和的平方,运用两数和的平方公式来计算?

  (2)可否看成两数差的平方,运用两数差的平方公式来计算?

  (3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2

  2、公式巩固

  (1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

  (2)下列各式的计算,错在哪里?应怎样改正?

  ①(a+b)2=a2+b2 ②(a-b)2=a2-b2

  ③(a-2b)2=a2+2ab+2b2

  3、练习:运用完全平方公式计算:(学生板演)

  ①(a+5)2 ②(3+x)2 ③(y-2)2 ④(7-y)2

  ⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2

  4、例2,运用完全平方公式计算:(1)1012 (2)982

  5、练习:运用完全平方公式计算

  (1)912 (2)7982 (3)(10 )2

  6、讨论:(1-2x)(-1-2x), (x-2y)(-2y+1)如何计算

  五、公式拓展,鼓励探究

  1、a2+b2=(a+b)2-______ a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a-b)2

  2、(a+b)2-(a-b)2=______ 3、(a+b+c)2=________

  4、提出思考题:(a+b)3=? (a+b)4=?

  5、已知 求 的值。

  6、已知: ,求 , 的值。

  6. 已知 ,求x和y的值。

  (1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。(3)形成知识网络,有利于学生进一步学习公式的运用

  (1)直接运用公式进行计算。(2)进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

  对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用

  讲练结合

  (1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。(2)体会公式实际运用作用,增加学习兴趣

  进一步辨析完全平方公式与平方差公式的区别

  公式变形利于各种计算

  提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

  六、小结提高,知识升华

  1、两个公式 (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  2、两种推导方法:多项式乘法导出;图形面积导出

  3、换元法与转化

  七、作业布置,分层落实

  1、阅读教材 6.17内容

  2、见省编作业本 6.17

  3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

  由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

  (1)作业1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。

  附:板书设计与时间大致安排

  屏 幕

  课题

  公式……例题

  学生板演

  本课时的时间大致安排:

  引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左右,公式拓展5分钟左右,小结作业布置约5分钟。

  设 计 说 明

  本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并且本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:

  1、完全平方公式的本质是多项式乘法,它的推导方法与平方差公式推导方法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。

  2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?……(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导方法,即授学生以渔,让学生学会学习。

  3、在练习设计与作业布置中都体现了分层次教学的要求,让不同层次的学生都能主动的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。

  4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。

  5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但又它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。

  数学《完全平方公式》教案 12

  一、教材分析

  本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。

  作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。

  二、学情分析

  学生刚学过多项式的乘法,已具备学习和运用完全平方公式的知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。

  三、教学目标

  知识与技能

  1.完全平方公式的推导及其应用。

  2.完全平方公式的几何证明。

  过程与方法

  经历探索完全平方公式的过程,进一步发展符号感和推理能力。

  情感态度与价值观

  对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。

  四、教学重点难点

  教学重点

  完全平方公式的推导过程;结构特点与公式的应用。

  教学难点

  完全平方公式结构特点及其应用。

  五、教法学法

  多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  六、教学过程设计

  师生活动

  设计意图

  一.复习多项式与多项式的乘法法则

  1、多项式与多项式的`乘法法则内容。

  2、多项式与多项式的乘法练习。

  二.讲授新课

  完全平方公式的推导

  1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式

  附:有简单的填空练习

  2、利用多项式乘法则和换元法推导完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、总结完全平方公式的特点

  介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。

  三、课堂练习

  1、改错练习

  2、例题讲解(总结利用完全平方公式计算的步骤)

  第一步选择公式,明确是哪两项和(或差)的平方;

  第二步准确代入公式;

  第三步化简。

  计算练习

  (1)课本110页第一题

  (2) (x-6)2 (y-5)2

  四、课堂小结:

  1、应用完全平方公式应注意什么?

  在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。

  2、助记口诀

  复习多项式与多项式的乘法法则为新课的学习做准备。

  利用不同的的方法来推导完全平方公式,让学生认知数学中的不同解题方法。

  利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。

  通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。

  强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。

【数学《完全平方公式》教案】相关文章:

初中数学《完全平方公式》教案08-11

《完全平方公式》教案11-23

(经典)《完全平方公式》教案15篇07-13

完全平方公式教学反思03-23

完全平方公式课件教案(通用10篇)05-17

《平方差公式》教案范文09-10

平方差公式教学教案06-21

《平方差公式》教案 (精选16篇)08-21

中学数学《平方差公式》说课稿03-14

《公式法-平方差公式》说课稿02-19