- 六年级数学下册第二单元利率教案 推荐度:
- 相关推荐
人教版六年级数学下册第二单元利率教案
作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?下面是小编收集整理的人教版六年级数学下册第二单元利率教案,欢迎大家分享。
人教版六年级数学下册第二单元利率教案1
难点名称
了解合理购物的意义,能自己做出购物方案,并对方案合理性做出充分的解释。
难点分析
从知识角度分析为什么难
让学生综合运用折扣知识解决生活中的“促销”问题,使学生对不同的促销方式有更深入地认识,经历综合应用知识的过程,具有一定的难度。
从学生角度分析为什么难
解题过程中对学生掌握百分数应用题的数量关系,解决问题的熟练度有较高的要求。“商场促销”虽对学生来说都不陌生,但学生购买促销商品的经验还不足,对各促销方式的实质理解具有一定的`难度。
难点教学方法
1、通过复习整理、引导分析、巩固练习,运用百分数的相关知识解决生活中的“促销”问题。
2、通过自主学习、小组讨论、反思总结体会各促销方式的实质。
教学过程
一、导入
1.妈妈想买一件原价700元的裙子,五折之后这条裙子多少钱?(重点理解答五折的意思)
2.指名学生回答
700×50%=350(元)
答:五折之后这条裙子350元
二、知识讲解(难点突破)
3.下面我们来看例题
(1)课件出示例5:某品牌的裙子搞促销活动。在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
读完这段话我们可以提出哪些数学问题呢?
小明提出了这样两个:
①在A、B两个商场买,各应付多少钱?
②选择哪个商场更省钱?
我们一起来解决这些问题。题目给出的数学信息中,哪些是关键呢?
A商场打五折销售,在B商场按“满100元减50元”的方式销售。
打五折它表示现价是原价的50%,那么每满100元减50元是什么意思?快来思考一下吧!
就是在总价中取整百元的部分,每个100元减去50元,不满100元的零头部分不优惠。
(2)在A商场买,直接用总价乘50%就能算出实际花费。列式:230×50%=115(元)
在B商场买,先看总价中有几个100,230里有2个100,然后从总价中减去2个50元。
列式:230-50×2=130(元)230-50×2=130(元)
答:在A商场买应付115元,在B商场买应付130元;打五折的方式更省钱。
(3)你还有疑问吗?
①满100元减50元,少了50元,也是打五折,怎么优惠的结果不一样呢?
原来打五折就是无论标价是多少,实际售价都是原价的50%。“而满100元减50元”就只能是原价中满了100元的部分能优惠50元,能打五折,而不满100元的部分就没有折扣了。
②什么情况下两种优惠会一样呢?
如果商品的售价刚好是整百元的时候,两种优惠结果是一样的。
(4)回顾与反思
看起来每满100元减50元不如打五折优惠。如果总价能凑成整百多一点就相差不多了。
以后我要陪妈妈购物,帮妈妈算账。
三、课堂练习(难点巩固)
4.巩固练习:某品牌的旅游鞋搞促销活动,在A商场按“每满100元减40元”的方式销售,在B
商场打六折销售。妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在A、B两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
A商场:120-40=80(元)
B商场:120×60%=72(元)
80>72
答在A商场买应付80元,在B商场买应付72元,选择B商场更省钱。
四、小结
1.在购物时,可以运用学过的百分数知识对商家的优惠方式进行分析对比,从而选出实惠、省钱的方案。
2.商家的促销方式:“打几折”,“每满100元返50元礼券”,“每满100元减50元”,“买五件送一件”都转化为百分数的知识来理解。
人教版六年级数学下册第二单元利率教案2
教学目标
1。理解利率,能利用百分数知识,解决与储蓄有关的实际问题。
2。结合储蓄等活动,学会合理理财,培养分析问题、解决问题的能力。
教学重点难点
理解概念,能利用百分数知识,解决与储蓄有关的实际问题。
教学过程
一、复习引入
1。复习利率有关知识:税收的种类,应纳税额,税率。
2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。
3。谁存过钱?怎么存的?将钱存入银行有什么好处呢?讨论利息的情况。
4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。
二、新课探究
1。自读教材11页例4上面的部分内容:
学习要求:理清以下问题
(1)存款有哪几种方式?
(2)什么是本金?
(3)什么是利息?
(4)什么是利率?
(5)怎样计算利息?
学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。
检测:
(1)结合20xx年10月利率表,说说各种存款方式的.年利率是多少?
(2)整存整取一年的年利率是1。50%,表示什么意思?
2。学以致用,教学例4:
(1)出示例4。
(2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?
(3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)
(4)归纳整理汇报:实际取回的钱数=本金+利息;利息=本金×利率×时间;
学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。
三、巩固练习
1。完成教材第11页“做一做”
(1)学生读题,分析题目,比例此题与例4的不同:本金不同,存期不同,利率不同。计算方法相同吗?
(2)学生运用公式独立解答后集体订正。
2。教材第14页“练习二”第9题。
先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。
3。教材第15页“练习二”第12题。
(1)妈妈需要慎重选择吗?怎么办?
(2)第一种方式的时间,利率是多少?第二种呢?
(3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。
小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。
四、课堂小结。
同学们,这节课有什么收获?
学生汇报,引导学生懂得储蓄是利国利民的事情;在银行存款的方式很多种,如活期、整存争取、零存整取等;存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。
板书设计
利率
利息=本金×利率×存期(时间)
例4 5000 ×(1+3。75%×2)
=5000×1。075
=5375(元)
答:到期时王奶奶可以取回5375元。
人教版六年级数学下册第二单元利率教案3
教学目标
1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。
2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。
3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。
教学重难点
1.利息和本息和的计算。
2.利息和本息和的计算。
教学过程
1.谈话。
大家的压岁钱是怎么管理的?为什么把钱存入银行?
2.导入。
把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的内容。
1.探究有关储蓄的知识。
(1)储蓄的好处。
(2)储蓄的方式。
(3)什么是本金、利息、利率以及三者之间的关系?
2.深入理解有关储蓄的知识。
课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。
引导学生找出题中的'本金和利息。
3.探究利息、利息与本金和的计算方法。
(1)分析题意,引导学生探究利息的计算方法。
(2)组织学生尝试解题,交流汇报。
巩固实践爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。
(1)贝贝到期可以拿到多少钱?
(2)如果是普通三年期存款,应缴纳利息税多元?
板书设计
利率
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:利息与本金的百分比叫做利率。
利息=本金×利率×存期
方法一:方法二:
5000×3.75%×2=375(元)5000×(1+3.75%×2)
5000+375=5375(元)=5000×(1+0.075)
=5000×1.075
=5375(元)
人教版六年级数学下册第二单元利率教案4
课题利率
教学内容教学内容:利率(课本第11页例4)
课型新课
教学目标
1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。
2、能正确计算利息。
教学重点:利息的计算
教学难点:利息的计算。
教学手段课件。
教学方法联系生活,引导学习,总结提升;自主学习,小组讨论
教学过程
一,导入新课:
同学们,你们去过银行吗?你知道去银行人民常做什么吗?你知道我们周围有什么银行?你见过银行卡吗?
二、创设生活情境,了解储蓄的意义和种类
1、储蓄的意义
师:快要到年底了,许多同学的爸爸妈妈的单位里
会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?
2、储蓄的.种类。(学生汇报课前调查)
三、自学课本,理解本金“、”利息“、”利率“的含义
1、自学课本中的例子,理解”本金“、”利息“、”利率“的含义,然后四人小组互相举例,检查对”本金“、”利息“、”利率“的理解。
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:;利息与本金的百分比叫做利率。
2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。
3、利息计算
(1)利息计算公式
利息=本金×利率×时间
(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3。75%)。
在弄清以上这些相关概念之后,学生尝试解答例题。
在学生独立审题解答的基础上订正。
方法一方法二
5000×3。75%×2=375(元)
5000×(1+3。75%×2)
5000+375=5375(元)=5000×1。075
=5375(元)
四、实践应用
第11页做一做
完成练习时看清题目认真审题,注意计算要准确。
五、课堂总结
学生谈谈学习本课有什么新的收获。
作业
第14页的第9题
板书设计
利率
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:;利息与本金的百分比叫做利率
利息计算公式
利息=本金×利率×时间
人教版六年级数学下册第二单元利率教案5
难点名称
理解本金、利息、利率之间的数量关系,利率和存期一一对应
难点分析
从知识角度分析为什么难
利息=本金×利率×存期,求整年度的利率,只要根据利率表,把整年度的利率和存期一一对应起来,相乘、再乘本金即可求出整年度的利息。但是求半年的利息,学生往往容易出现本金×半年的利息×6。看见根据公式的有问题,学生的利率和存期的关系一一对应起来。
从学生角度分析为什么难
学生对什么是利息,概念抽象、理解困难,六年级学生的心理上一看套公式解决问题,心理的松了,机械的带公式解决问题。学生没有理解半年的年利率的含义,年利率的'和存期没有一一对应起来,导致错误。
难点教学方法
1.通过错例对比分析,发现利率和存期是一一对应关系,
2.通过一题多解的方式,学生理解利率和存期一一对应关系
教学过程
一、导入
1.谈话,将多余的钱存入银行即可增加收入,又支援了国家建设。
2.出示存单,介绍利息,思考利息与什么有关系?
二、知识讲解(难点突破)
3.出示利率表,根据利率表解决第一个问题,王奶奶到银行存钱,到期后可以取多少钱?思考问题的同时介绍本金、存期、利息的概念,出示求利息的计算公式,解决王奶奶本金5000元,存期1年后可取回多少钱的问题。
4.改变存期,本金不变,存期由一年变成两年,两年后王奶奶可取回多少钱?主要考察学生能否把存款的利率和存期一一对应起来,
存款是整年:只要用本金×年利率×存期就能求出相应的利息了。
5.设疑激趣,引发学生思考
改变存期由两年调整到半年,半年后的利率是多少呢?
出示计算方法,5000×1.55%×6=465(元)
发现半年的利息怎么比一年的利息还高呢?问题出在哪里?
6.寻找出错原因
(1)1.55%是半年的利率,6是6个月,6个月是多少年呢?1/2或0.5年,现在计算是多少?
(2)介绍另一种计算方法,突出利率和存期可对应关系,
5000×1.55%÷12×6=38.75(元)
(4)通过两种计算利率的方法,理解利率和存期的对应关系。
存期用多少年表示,就要用年利率;存期用多少月表示,就要用月利率。
三、课堂练习(难点巩固)
7.巩固练习
王奶奶本金不变,存期三个月,到期可得多少利息?(独立完成)
5000×1.35%×?=16.88(元)
5000×1.35%÷12×3=≈16.88(元)
四、小结
8.扩展思考:存款、贷款、理财产品都涉及到利率的问题
人教版六年级数学下册第二单元利率教案6
教学内容分析
教材首先用文字说明了储蓄的意义,介绍了本金、利率、利息的意义以及三者之间的关系,然后通过例4让学生掌握计算利息的基本方法。
教学目标
1.知道储蓄的意义,理解本金、利息、利率的意义。
2.掌握计算利息的基本方法。
3.经历收集信息的过程,培养学生在合作交流中解决问题的能力。
重点:掌握利息的.计算方法。
难点:正确理解概念,能解决与利息有关的实际问题。
教学设计思路
创设情境,导入新课→合作交流,探究新知→巩固应用,提升能力→课堂小结,拓展延伸
教学准备
教师准备:PPT课件
教学过程
一、创设情境,导入新课。(5分钟)
1.创设情境。
师:同学们一定很喜欢过年吧,因为过年不仅有好吃的,好玩的,还可以得到不少压岁钱。你们的压岁钱是谁在保管着呢?(引导学生想到储蓄比较安全,并且能够得到利息)
2.导入新课。
师:同学们,你们了解储蓄吗?关于储蓄有哪些知识呢?这节课我们了解一下储蓄的知识。
二、合作交流,探究新知。(20分钟)
1.引导学生自学教材第11页关于储蓄的知识。
(1)出示自学提示:
①储蓄的好处。
②储蓄的方式。
③什么是本金、利息、利率?
④利息的计算公式是什么?
(2)检验自学成果,引导学生找出下题中的本金和利息。
课件出示:明明20xx年11月1日把100元压岁钱存入银行,整存整取1年,到20xx年11月1日,明明不仅可以取回存入的100元,还可以得到银行多付给的1.5元,共101.5元。
2.用储蓄的知识解决问题。
(1)课件出示例4,引导学生读题并找出已知条件和所求问题。
(2)组织小组讨论:求2年后可以取回多少钱,就是求什么。
(3)组织学生尝试解题。
(4)组织全班交流,明确解题思路。
思路一:先求利息,最后求可取回多少钱。可取回钱数为本金+(本金×利率×存期)。
思路二:把本金看作单位“1”,先求出本金和2年的利息一共是本金的百分之几,再求可以取回多少钱。可取回的钱数为本金×(1+年利率×2)。
三、巩固应用,提升能力。(10分钟)
1.完成教材第11页“做一做”。
2.完成教材第14页第9题。
四、课堂小结,拓展延伸。(5分钟)
1.这节课我们学习了什么?引导学生回顾总结。
2.计算利息时,存款的利率是年利率,计算时所乘的时间单位应是年;存款的利率是月利率,计算时所乘的时间单位应是月。
板书设计利率
例4方法一5000×2.10%×2=210(元)
5000+210=5210(元)
方法二5000×(1+2.10%×2)
=5000×(1+0.042)
=5000×1.042
=5210(元)
答:到期时王奶奶可以取回5210元。
培优作业1.刘亮有20xx元,打算存入银行2年。现有两种储蓄方法:第一种是直接存2年,年利率是2.10%;第二种是先存1年,年利率是1.50%,第一年到期时再把本金和利息合在一起,再存1年。选择哪种储蓄方法得到的利息多一些?
第一种储蓄方法:20xx×2.10%×2=84(元)
第二种储蓄方法:20xx×1.50%×1=30(元)
(20xx+30)×1.50%×1=30.45(元)
30+30.45=60.45(元)
60.45<84,选择第一种储蓄方法得到的利息多一些。
提示:在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。
2.赵伯伯把一笔钱存入银行5年,年利率为2.75%,到期后取得275元利息。赵伯伯存入银行多少钱?
275÷2.75%÷5=20xx(元)
答:赵伯伯存入银行20xx元。
教学反思培养学生的数学能力是小学数学教学的重要任务之一。为此,教学中,要引导学生正确运用公式计算各种情况下的利息问题。
微课设计点教师可围绕“利息的计算方法”设计微课。
人教版六年级数学下册第二单元利率教案7
教学目标
1、知识与技能
理解利率的概念,掌握利率在实际生活中的应用。
2、过程与方法
通过对利率的详细讲解以及相关问题的解决,使学生认识到利率在实际生活中的应用。
3、情感态度与价值观
培养学生用数学视角观察生活的习惯独以及立解决问题的能力。
教学重难点
利率与本金、利息、时间的关系;利率相关问题的解决过程。
教学用具
多媒体课件
教学过程
一、知识回顾
表示一个数占另一个数的百分之几的数,叫做百分数。也叫做百分率或者百分比。百分数通常不写成分数的形式,而是在分子后面加上百分号“%”来表示。
二、新课引入
1、概念理解
老师:同学们是不是都见过银行卡呢?为什么我们要选择把钱存入银行呢?把钱存入银行,不仅可以支援国家建设,使钱更加安全,还能增加一些收入。
在银行的存款方式有多种,如活期、整存整取、零存整取等。存入银行的钱叫做本金,取款时银行多支付的钱叫做利息。单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。利息的计算公式是:利息=本金×利率×存期。
根据国家发展规律的变化,银行存款的利率有时会有所调整,20xx年7月中国人民银行公布的存款利率如下表:
2、例题详讲
例:20xx年8月,王奶奶把5000元钱存入银行,存两年,问到期时可以取回多少钱?
老师分析:王奶奶到期取钱时除了本金,还应该加上得到的利息,就是王奶奶可取回的钱。
解:小明的解法:5000 x 3.75% x 2=375(元)5000 + 375 = 5375(元)
小丽的解法:5000 x (1+3.75%x2)= 5000 x (1+7.5%)=5000x1.075=5375(元)
答:到期时王奶奶可以取回5375元。
下面同学们分组讨论小明与小丽解答方法的不同点,说出他们列出的式子的意义。
小明的解法:先算出利息,再加上本金就是取回的钱。
小丽的解法:用本金与单位一加上利息率和时间的乘积相乘,就能得出直接得出可取回的钱。
3、即时练习
20xx年8月,张爷爷把儿子寄来的`8000元钱存入银行,存期为5年,年利率为4.75%,到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?
解:8000 x 5x 4.75%=1900(元)8000+1900=9900(元)
答:到期时张爷爷可得到1900元的利息,一共能取回9900元。
拓展延伸
妈妈有1万元钱,有两种理财方式:一种是买3年期国债,年利率4.5%;另一种是买银行1年期理财产品,年收益率4.3%,每年到期后连本带息继续购买下一年的理财产品。3年后,哪种理财方式收益更大?
解:第一种方式收益:10000 x 4.5% x 3 = 1350(元)
第二种方式收益:第一年利息10000 x 4.3%=430(元)
第二年利息(10000+430)x 4. 3%=448.49(元)
第三年利息(10000+430+448.49)x 4. 3%≈467.8(元)
总收益430+448.49+467.8=1346.29(元)
1346.29<1350
答:三年后,买3年期国债收益更大。
课外任务
去附近的银行调查最新的利率,并与本节课的利率表进行对比,了解国家调整利率的原因。
本课小结
1、利率的概念和意义。
2、利率有关问题的解答。
3、根据利率的有关概念建立合理的理财方案。
【六年级数学下册第二单元利率教案】相关文章:
人教版六年级数学下册第二单元利率教案(精选10篇)07-04
人教版六年级数学下册第二单元《成数》教案11-17
人教版六年级数学下册第二单元《税率》教案11-18
六年级数学第二单元位置与方向教案07-22
四年级数学下册第二单元教案:观察物体04-08
三年级下册第二单元教案08-29