七年级数学下册教案(通用20篇)
作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编整理的七年级数学下册教案,欢迎大家分享。
七年级数学下册教案 篇1
〖教学目标〗
1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。
2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。
3、会用多项式的乘法解决简单的实际问题。
〖教学重点与难点〗
教学重点:多项式与多项式相乘的.运算。
教学难点:例2包含了多种运算,过程比较复杂是本节的难点。
〖教学过程〗
一、创设情境,引出课题
小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?
二、引出新知,探究示例
1、合作探索学习:有一家厨房的平面布局如图1
(1)请用三种不同的方法表示厨房的总面积。
(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?
(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?
(让学生以同桌合作的形式进行探索,然后表达交流)
答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm……②
第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。
(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:
(学生归纳,教师板书)
2、运用新知,计算例题
例1:计算
(1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2
解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by
(2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3
(3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1
教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。
反馈练习:课内练习1
例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=
解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3
当a=时,原式=17a—3=17×()—3=—19—3=—22
注意的几点:(1)必须先化简,再求值,注意符号及解题格式。
(2)当代入的是一个负数时,添上括号。
(3)在运算过程中,把带分数化为假分数来计算。
反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。
2、课内练习2、3。
三、分层训练,能力升级
1、填空
(1)(2x—1)(x—1)=
(2)x(x2—1)—(x+1)(x2+1)=
(3)若(x—a)(x+2)=x2—6x—16,则a=
(4)方程y(y—1)—(y—2)(y+3)=2的解为
2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。
3、某人以一年期的定期储蓄把20xx元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?
四、小结
让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。
五、布置作业
课本的分层作业题。
七年级数学下册教案 篇2
平方根教学设计
一、情景引入(复习引入)
1、求下列和数的算术平方根4、9、100、9/16、0.25
2、如果一个数的平方等于9,这个数是多少?
讨论:这样的数有两个,它们是3和-3.注意中括号的作用.
又如:,则x等于多少呢?
二、探索新知
1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
2、观察:课本P45的图6.1-2.
图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.
例4求下列各数的平方根。
(1) 100 (2) (3) 0.25
3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的'平方根可用-表示.
例5说出下列各式的意义,并求出它们的值。
归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
4、堂上练习:课本P46小练习1、2、3
三、归纳小结(学生归纳,老师点评)
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a的平方怎样表示?
四、布置作业
P47-48习题6、1第3、4题。
五、板书设计:
6.1平方根
1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
2、a的平方根记为:
3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
《平方根》同步练习题
1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.
《6.1平方根》课时练习含答案
1.下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误.
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
七年级数学下册教案 篇3
【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的'进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。
【教具准备】小黑板 科学计算器
【教学过程】
一、复习导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、练习内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若x=6,则=( )
5、若=0,则x=( ) 6、当x( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固
七年级数学下册教案 篇4
教学目标:
1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。
2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。
教学重点:
1.概率的定义及简单的列举法计算。
2.应用概率知识解决问题。
教学难点:灵活应用概率的计算方法解决各种类型的实际问题。
教学过程:
一、复习旧知
1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,
不可能事件的有 ,必然事件有 ,不确定事件有 。
2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;
3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。
4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?
5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?
求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的.重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。
二、情境导入
1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?
2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。
(1)会出现哪些可能的结果?
(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?
学生分组讨论,教师引导
三、探究新知
1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?
学生分组讨论,教师引导:
(1)一次试验可能出现的结果是有限的;
(2)每种结果出现的可能性相同。
设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。
2、探究等可能性事件的概率
(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?
(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?
学生先独立思考,然后同桌间讨论,教师巡视指导
一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:
P(A)=/n
必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1
3、应用新知
例:任意掷一枚均匀骰子。
1.掷出的点数大于4的概率是多少?
2.掷出的点数是偶数的概率是多少?
解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。
1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.
所以P(掷出的点数大于4)=2/6=1/3
2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=3/6=1/2
四、实践练习
1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?
2、先后抛掷2枚均匀的硬币
(1)一共可能出现多少种不同的结果?
(2)出现“1枚正面、1面反面”的结果有多少种?
(3)出现“1枚正面、1面反面”的概率有多少种?
(4)出现“1枚正面、1面反面”的概率是1/3,对吗?
3、将一个均匀的骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的数之和分别是5的结果有多少种?
(3)向上的数之和分别是5的概率是多少?
(4)向上的数之和为6和7的概率是多少?
五、课堂检测
1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )
A 2/9 B 1/3 C 4/9 D以上都不对
2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )
A 0.34 B 0.17 C 0.66 D 0.76
3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )
A 3/10 B 7/10 C 2/5 D 3/5
4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是
5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=
P(摸到白球)=
P(摸到黄球)=
6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?
六、课堂小结
回想一下这节课的学习内容,同学们自己的收获是什么?
1、等可能性事件的特征:
(1)一次试验中有可能出现的结果是有限的。(有限性)
(2)每种结果出现的可能性相等。(等可能性)
2、求等可能性事件概率的步骤:
(1)审清题意,判断本试验是否为等可能性事件。
(2)计算所有基本事件的总结果数n。
(3)计算事件A所包含的结果数。
(4)计算P(A)=/n。
布置作业:
1、P148习题6.4知识技能 1.2.3
2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。
板书设计
等可能事件的概率(1)
等可能事件的特征:
1、 一次试验可能出现的结果是有限的;
2、 每一结果出现的可能性相等。
一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:
七年级数学下册教案 篇5
教学过程
一、目标展示
二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、
如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。
学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。
题组一:
1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的'位置关系b只有与两种。
3、下列生活实例中:
(1)交通道路上的斑马线;
(2)天上的彩虹;
(3)阅兵队的纵队;
(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:
4、通过画图和观察,可得两个平行公理:
①、经过点,一条直线平行于已知直线;
②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:
①、a与b没有公共点,则a与b;
②、a与b有且只有一个公共点,则a与b;
③、 a与b有两个公共点,则a与b;
6、过一点画已知直线的平行线有()
A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条
教学设计
1、落实教学常规,践行学校《教师日常教学行为要求》。
2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。
七年级数学下册教案 篇6
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的.两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
七年级数学下册教案 篇7
教学目标
1.知道有效数字的概念;
2.会按要求进行近似数的运算
教学过程
一、创设情境,导入新课
1.什么叫实数?实数怎么分类?
2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?
3.做一做
如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?
二、合作交流,探究新知
1 交流上面问题的做法
(1)估计同学们会有两种做法:
用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)
(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:
如果没有两种做法,也要想办法引出这两种做法
两种做法的答案不同,哪一种答案正确呢?
请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?
这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的'近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念
在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?
先思考:0.010256精确到小数点后面第三位,等于多少呢?
0.0102560.0103
近似数0.0103有三个有效数字1、0、3
现在你能说说,什么叫近似数的有效数字吗?
从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1 近似数0.03350有几个有效数字,分别是______________________.
2 125万保留两个有效数字等于__________
3 有_______个有效数字。
3、怎样进行近似值的运算?
在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。
例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。
(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。
例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)
考考你:1.计算(精确到小数点后面第二位)(1),(2)
2.计算(保留三个有效数字)(1) (2)
三、应用迁移,巩固提高
例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?
变式:上面问题中27倍改为:8倍,其他不变
例4 已知求a+b的值。
例5 设a、b为实数,且求的值。
四、反思小结,拓展提高
这节课,你认为最重要的是什么?
1.有效数字的概念;2.实数的近似数的计算
七年级数学下册教案 篇8
1.2 一元一次不等式组的解法
2.2二元一次方程组的解法
2.3二元一次方程组的应用(1)
第10教案
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的.辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
第11教案
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
五、作业。
七年级数学下册教案 篇9
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练
1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题) (第2题)
2.如图,一个合格的'变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
七年级数学下册教案 篇10
课题: 10.1 平方根(1)
教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;
3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点 根据算术平方根的概念正确求出非负数的算术平方根。
知识重点 算术平方根的概念。
教学过程(师生活动) 设计理念
情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.
这节课我们先学习有关算术平方根的概念.
请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对
本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知
幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.
提出问题
感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题
就是已知正方形的面积求正方形的边长,这与学生以前学过的
已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式 =a (x≥0)中,规定x = .
思考:这里的数a应该是怎样的数呢?
试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.
想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。
算术平方根的概念比较抽象,原因之一是学生对石这个新
的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.
应用新知 例.(课本第160页的例1)求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为
例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.
探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的.近似值我们将在下节课探究.
教科书在边空提出问题“小正方形的对角线的长是多少”,
这是为在10.3节介绍在数轴上画出表示 的点做准备.
小结与作业
课堂小结 提问:1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。
4、 备选题:
(1)判断下列说法是否正确:
i. 是25的算术平方根;
ii. 一6是 的算术平方根;
iii. 0的算术平方根是0;
iv. 0.01是0.1的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根.
(2)下列各式哪些有意义,哪些没有意义?
①- ② ③ ④
(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。
在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算
术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.
通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣
的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.
通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.
七年级数学下册教案 篇11
复习巩固解下列不等式:
①5x+54<x-1②2(1一3x)3x+20
③2(一3+x)<3(x+2)
④(x+5)3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.让学生在解题过程中有目的地思考,既可巩固已学内容,又为下面的新课做好铺垫。
提出问题20xx年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到20xx年这样的比值要超过70%,那么,20xx年北京空气质量良好(二级以上)的天数至少要增加多少天?选择学生感兴趣的问题,可以激发学习热情,此题既承上启下,又能增强学生的应用意识。
解决问题1、20xx年北京空气质量良好的天数是多少?
2、用x表示20xx年增加的空气质量良好的天数,则20xx年北京空气质量良好的天数是多少?
3、20xx年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?
4、怎样解不等式在学生讨论后,教师做解题过程示范.
5、比较解这个不等式与解方程的步骤,两者有什么不同吗?
在学生充分讨论的基础上,师生共同归纳得出:
解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的.方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa或xa)的形式.一连串的问题引发学生阵阵思考。
展示整个解题过程,有利于学生发现解一元一次不等式与
解一元一次方程的关系,初步感知实际问题对不等式解集的影响.
让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.
巩固新知1、解下列不等式,并在数轴上表示解集:
(1)(2)2、.当x或y满足什么条件时,下列关系成立?
(1)2(x+1)大于或等于1;
(2)4x与7的和不小于6;
(3)y与1的差不大于2y与3的差;
(4)3y与7的和的小于-2.学会举一反三,巩固已学知识。a)的形式.一连串的问题引发学生阵阵思考。展示整个解题过程,有利于学生发现解一元一次不等式与解一元一次方程的关系,初步感知实际问题对不等式解集的影响.让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.巩固新知1、解下列不等式,并在数轴上表示解集:(1)(2)2、.当x或y满足什么条件时,下列关系成立?(1)2(x+1)大于或等于1;(2)4x与7的和不小于6;(3)y与1的差不大于2y与3的差;(4)3y与7的和的小于-2.学会举一反三,巩固已学知识
七年级数学下册教案 篇12
教学过程(师生活动):
提出问题:
某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.
探究新知:
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1)x≤50(2)-4x3
(3)7-3x≤10(4)2x-33x+1
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处.
巩固新知:
1、解下列不等式,并在数轴上表示解集:
(1)(2)-8x10
2、用不等式表示下列语句并写出解集:
(1)x的3倍大于或等于1;
(2)y的.的差不大于-2.
解决问题:
测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?
总结归纳:
围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习,我取得了哪些收获?
3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨?
七年级数学下册教案 篇13
1.2二元一次方程组的解法
1.2.1代入消元法
教学目标
1.了解解方程组的基本思想是消元。
2.了解代入法是消元的.一种方法。
3.会用代入法解二元一次方程组。
4.培养思维的灵活性,增强学好数学的信心。
教学重点
用代入法解二元一次方程组消元过程。
教学难点
灵活消元使计算简便。
教学过程
一、引入本课。
接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?
二、探究。
比较此列二元一次方程组和一元一次方程,找出它们之间的联系。
xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,
可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?
15xy9例1:解方程组 2y3x1
讨论:怎样消去一个未知数?
解出本题并检验。
12x3y0例2:解方程组 25x7y1
讨论:与例1比较本题中是否有与y3x1类似的方程?
怎样解本题?
学生完成解题过程。
草稿纸上检验所得结果。
简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)
三、练习
P27.练习题。
四、小结
本节课你有什么收获?
五、作业
习题2.2A组第1题。
后记
七年级数学下册教案 篇14
教材分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要
教学目标:
知识技能:
1.掌握平行线的三个性质
2.会用平行线的性质进行有关的简单推理和计算
3.通过对比,理解平行线的性质和判定的区别
过程与方法:
在探索图形的`过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力
情感、态度与价值观:
让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度
教学重点:平行线的三个性质的探索
教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理
教学过程:
1、创设情境:
(1)、回顾直线平行的条件。(学生回答后,教师板书。)
(2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
[设计意图]:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。
2、探究新知:
(1)、画平行线:
教师通过多媒体演示。
学生用方格或笔记本上的横线。
[设计意图]:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)、问题1:如何得到同位角? a
学生独立思考后回答:如可随意画 2 b
条直线与两条平行线相交,如图1,∠1 c
和∠2是同位角。 图1
[设计意图]:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。
问题2:你准备怎样去找∠1和∠2的关系?
学生分组合作交流,进行探究后发表见解。
学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。
[设计意图]:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。
七年级数学下册教案 篇15
【知识讲解】
一、本讲主要学习内容
1、代数式的意义
2、列代数式的注意点
3、代数式值的意义
其中列代数式是重点,也是难点。
下面讲述一下这三点知识的主要内容。
1、代数式的意义
用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等
2.列代数式的注意点
⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。
⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。
⑶数字写在字母的前面。
⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。
⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。
(6)两个代数式相乘,应该用分数形式表示。
3.代数式值的意义
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。
二、典型例题
例1 填空
①棱长是acm 的正方体的体积是___cm3。
②温度由t°c下降2°c后是___°c。
③产量由m千克增长10%,就达到___千克。
④a和b 的倒数和是___。
⑤a和b的和的倒数是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。
⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。
例2、用代数式表示
⑴被4整除得 m的数
⑵被2除商为 a余1的数
⑶两数的平均数
⑷a和b两数的平方差与这两数平方和的商
⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。
⑺个位数字是8,十位数字是 b 的两位数。
解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。
⑷ ⑸ ⑹ ⑺10b+8
分析说明:
⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。
⑵能被2整除的`数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。
⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。
⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。
⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。
⑹平均速度=
所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。
题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。
例3说出下列代数式的意义。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。
①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;
②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;
③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。
解:(1)a的3倍与2的和;
(2)a与2的和的3倍;
(3)a与b的差除以c的商;
(4)a与b除以c的差;
(5)a与b的差的平方;
(6)a、b的平方差。
例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。
【一周一练】
1、选择题
(1)下列各式中,属于代数式的有( )个。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代数式,书写正确的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代数式表示“a的 乘以b减去c的积”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用语言叙述代数式 ,表述不正确的是( )
a、比a的倒数小2的数; b、a与2的差的倒数
c、1除以a减去2的商 d、比a小2的数的倒数
2、判断题
⑴n除m用代数式可表示成 ( )
⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )
⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )
3、填空题
⑴每本练习本是0.3元,买a本练习本需__元。
⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。
⑶被3整除得n 的数是__。
⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。
⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。
⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。
⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__
⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。
4.求下列代数式的值。
⑴ 其中a=2
⑵当 时,求代数式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。
七年级数学下册教案 篇16
1.2二元一次方程组的解法
1.2.1代入消元法
教学目标
1.了解解方程组的基本思想是消元。
2.了解代入法是消元的一种方法。
3.会用代入法解二元一次方程组。
4.培养思维的.灵活性,增强学好数学的信心。
教学重点
用代入法解二元一次方程组消元过程。
教学难点
灵活消元使计算简便。
教学过程
一、引入本课。
接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?
二、探究。
比较此列二元一次方程组和一元一次方程,找出它们之间的联系。
xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,
可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?
15xy9例1:解方程组 2y3x1
讨论:怎样消去一个未知数?
解出本题并检验。
12x3y0例2:解方程组 25x7y1
讨论:与例1比较本题中是否有与y3x1类似的方程?
怎样解本题?
学生完成解题过程。
草稿纸上检验所得结果。
简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)
三、练习
P27.练习题。
四、小结
本节课你有什么收获?
五、作业
习题2.2A组第1题。
后记
七年级数学下册教案 篇17
教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
教学准备
多媒体课件
教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作XXXXXXXXXX,B处记作XXXXXXXXXX。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6,0,-10,+10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:
1、一个正数的'绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1)-3的符号是XXXXXXX,绝对值是XXXXXX;
(2)+3的符号是XXXXXXX,绝对值是XXXXXX;
(3)-6.5的符号是XXXXXXX,绝对值是XXXXXX;
(4)+6.5的符号是XXXXXXX,绝对值是XXXXXX;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数
②一个数的绝对值是它的相反数,这个数是什么数
③一个数的绝对值一定是正数吗
④一个数的绝对值不可能是负数,对吗
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴
②从几何意义上分析,画一个数轴
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识
2、你觉得本节课有什么收获
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
七年级数学下册教案 篇18
一、教学目标
1、知识与技能
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的
(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;
(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的.思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)
2、在组长的组织下进行讨论、交流。(约5分钟)
3、小组分任务展示。(约25分钟)
4、达标检测。(约5分钟)
5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么
(二)小组合作交流,探究新知
1、观察下图,回答问题:(五组完成)
大象距原点多远两只小狗分别距原点多远
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2
(2)求下列各组数的绝对值:(一组完成)
(1)4,-4;
(2)0.8,-0.8;
从上面的结果你发现了什么
3、议一议:(八组完成)
(1)|+2|=,1=,|+8.2|=;5
(2)|-3|=,|-0.2|=,|-8|=.
(3)|0|=;
你能从中发现什么规律
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1
(2)求出(1)中各数的绝对值,并比较它们的大小
(3)你发现了什么
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)
(3)-8和-3(七组完成)
5和-2.7(六组完成)6五、达标检测:
1:填空:
绝对值是10的数有()
|+15|=()|–4|=()
|0|=()|4|=()
2:判断
(1)、绝对值最小的数是0。()
(2)、一个数的绝对值一定是正数。()
(3)、一个数的绝对值不可能是负数。()
(4)、互为相反数的两个数,它们的绝对值一定相等。()
(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数;0的绝对值是0.
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
七年级数学下册教案 篇19
知识与技能:
掌握本章基本概念与运算,能用本章知识解决实际问题。
过程与方法:
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
情感态度:
领悟分类讨论思想,学会类比学习的方法。
教学重点:
本章知识梳理及掌握基本知识点。
教学难点:
应用本章知识解决实际与综合问题。
一、知识框图,整体把握
教学说明:
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解
1、利用平方根的'概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴这个数是36
教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2、比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
七年级数学下册教案 篇20
学习目标
1. 理解有序数对的应用意义,了解平面上确定点的常用方法
2. 培养用数学的意识,激发学习兴趣.
学习重点: 理解有序数对的意义和作用
学习难点: 用有序数对表示点的位置
学习过程
一.问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.A点为原点(0,0),则B点记为(3,1)
2.以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2是某次海战中敌我双方舰艇对峙,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1.是某城市市区的'一部分,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1. 为什么要用有序数对表示点的位置,没有顺序可以吗?
2. 几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
【七年级数学下册教案】相关文章:
七年级数学下册教案01-09
七年级数学下册教案优秀02-15
小学数学下册教案11-28
七年级数学下册教案(15篇)02-15
七年级数学下册教案15篇01-23
七年级数学下册教案精选15篇02-15
七年级数学下册教案(精选15篇)03-01
七年级数学下册教案(集锦15篇)02-15
七年级数学下册教案(精品15篇)09-28
初二数学下册教案12-12