分数除法教案(精选16篇)
作为一名教学工作者,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?下面是小编精心整理的分数除法教案(精选16篇),欢迎阅读与收藏。
分数除法教案 篇1
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的'数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χ×2/9=6
χ×2/9÷2/9=6÷2/9
χ×=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χ×1/5=30 χ×2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
分数除法教案 篇2
【学习目标】
1、能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养自己的语言表达能力和抽象概括能力。
3、养成良好的计算习惯。
【学习重难点】
1、重点是抽象概括出分数除法的计算法则。
2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。
【学习过程】
一、复习
1、列式,说清数量关系。
小明2小时走了6 km,平均每小时走多少千米?
速度=路程÷时间
2、计算:151×4 ×3 ×2 ×6 971215
8352÷4 ÷3 ÷2 ÷6 9765
二、探索新知
1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?
2、探究2÷
(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3
(2) 动手画线段图表示已知条件与问题的关系。
1小时走的路程,再将线段平均分成3份,其中2份
表示的就是2小时走的路程。 3
(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?
2要怎样计算?它把除法转化成什么?怎样转化? 3
55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷
4、通过上面的'2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?
______________________________________________________________
三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)
四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数除法教案 篇3
教学目标
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具
投影仪。
教学过程
一、导入
1.笔算下面各题。
24÷4+16×5-37 46+50×[(900-90)÷9]
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。
三、课堂作业新设计
1.填空。
四、思维训练参考答案
思维训练
1.D 2.略
教材习题
教材第33页做一做
板书设计
分数四则混合运算
运算顺序
(1)不含括号的分数混合运算的'运算顺序:在一个分数混合运算算式里,如果只
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
分数除法教案 篇4
【教学目标】
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
【教学重点】
整数除以分数的计算法则推导过程。
【教学难点】
理解一个数除以分数的计算法则的推导过程,
【教学过程】
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动
(1)出示教材27页“分一分”的第(1)、(2)题
学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”
师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用
书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的`帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?
(学生谈收获)
【板书设计】
整数除以分数
a÷=a×(b、c≠0)
【教学反思】
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:
第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。
第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。
第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。
第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。
分数除法教案 篇5
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的'教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
分数除法教案 篇6
【学习目标】
1、掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,
能熟练地列方程解答这类应用题。
2、进一步培养自主探索问题的能力和分析、推理和判断等思维能力。
3、提高解答应用题的能力。
【学习重难点】
1、重点是弄清单位“1”的量,会分析题中的数量关系。
2、难点是分数除法应用题的特点及解题思路和解题方法。
【学习过程】
一、复习
1、复习题:根据测定,成人体内的水分约占体重的24,而儿童体内的水分约占体重的,35
六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并说出数量关系式。_______________
4=体内水分的重量 5
4列式计算____________________________________________
二、探索新知
1、解决例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)结合线段图理解题意,分析题中的`数量关,写出等量关系式。_________________
(
3)这道题与复习题相比有什么相同点和不同点?
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?
1”设为χ,列方程来解决问题。 注意解题格式。(将此题在反面按正确格式解答一遍。)
(5)也可以应用算术方法来解答此题。__________________________________________
2、阅读例1第(2)个问题,并思考下列问题,若有问题可以小组讨论。
(1)要求爸爸体重,需要题目中出现的哪两个条件?
(2)画出线段示意图,将已知条件和问题标注在线段图上。想一想上一题的线段图和这一
题的线段图有什么区别?
(3)写出等量关系,列出方程并解答。(在反面)
三、知识应用:独立完成P38“做一做”,组长检查核对,提出质疑。
四、层级训练:1、巩固训练:完成P40练习十第1、2、3、5题。
2、拓展提高:练习十第6、7、8、9题。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)
分数除法教案 篇7
教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0。3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据: ,写出 ,
(二)教学分数除以整数的计算法则
1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.
(3)教师板书整理.
(米)
2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?
也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:
把 米铁丝平均分成6段,就是求 米的 是多少,列式是:
3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的`计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.
三、巩固练习
(一)计算下面各题.
学生独立完成,教师巡视,进行个别辅导.
(二)求未知数
1. 2.
(三)判断.
1.分数除法的意义与整数除法的意义相同.( )
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )
3. ( )
4. ( )
5. ( )
(四)解答下面各题.
1.把 平均分成4份,每份是多少?
2.什么数乘以6等于 ?
3.一个正方形的周长是 米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
(一)计算下面各题.
(二)解下列方程.
六、板书设计
分数除法
分数除法教案 篇8
【学习目标】
1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。
2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。
3、通过练习,培养计算能力及初步的逻辑思维能力。
【学习重难点】
1、重点是确定运算顺序再进行计算。
2、难点是明确混合运算的顺序。
【学习过程】
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;
如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的.,后算中括号里面
的,最后算中括号外面的。
2、整数四则混合运算定律在分数四则运算中同样适用。
3、说出下面各题的运算顺序。
(1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4
(3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)
二、探索新知
1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。
A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3
算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
2、列出综合算式,想一想它的运算顺序,再独立计算。
______________________________________________________________
3、独立完成P34 “做一做”第1、2题
4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。
三、知识应用:独立完成练习九第1题,组长检查核对,提出质疑。
四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。
(1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342
五、总结梳理:回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)
分数除法教案 篇9
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的`平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
分数除法教案 篇10
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学重难点
教学重点:弄清单位“1”的量,会分析题中的数量关系。
教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的`体重×4/5=体内水分的重量。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的2/3,而儿童
体内的水分约占体重的4/5,小明体内有28千克水分,
他的体重是爸爸体重的7/15,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/5=体内水分的重量,
反过来,体内水分的重量÷4/5=小明的体重)。
2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式:爸爸的体重×7/15=小明的体重
小明的体重÷7/15=爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/15χ=35
χ=35÷7/15
χ=75
②算术解:35÷7/15=75(千克)
课件演示计算的算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ,并列出方程.
4、巩固练习:P38“做一做”课件出示:
学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
分数除法教案 篇11
教学目标:
1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位1的量,会分析题中的.数量关系。
教学难点:
分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?
(1)吃了 是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。 解:设买来大米X千克。
x- x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。 解:设航模小组有人。
+ =25
(1+ )=25
=25
=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案 篇12
教学目的:
使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。
教学过程
一、复习
1.口算下列各题。
2.把下列假分数改写成带分数。
3.把下列带分数改写成假分数。
让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。
二、新课
1.教学例5。
教师出示例5:
教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)
教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)
教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。
2.做教科书第39页中间做一做的题目。
让学生独立完成。做完后集体订正。
3.教学例6。
(1)准备题。
①的.3倍是多少?②的是多少?③的是多少?
教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)
教师让学生计算后集体订正。
(2)教学6。
教师出示例6:
教师指名说题目的条件和问题。
教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)
教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)
教师:应该设什么数为未知数x?(设这个数为未知数x。)
让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。
4.做教科书39页下面做一做题目。
让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。
三、巩固练习
1.做练习十第1题第1行的小题。
让学生装独立完成。做完后集体订正。
2.做练习十第2题的前2个小题。
让学生装独立完成,做完后集体订正。
3.做练习十第3题的第(1)~(3)题。
第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。
第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)
4.做练习十的第5题。
教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。
四、作业
练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。
分数除法教案 篇13
教学目标
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学工具
多媒体课件,圆形纸片,剪刀
教学过程
一、创设情境,导入新课,
师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)
1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:8÷4=2(个)
2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:1÷4=
二、动手操作,探索新知
1、探索一个物体平均分,体会分数与除法的关系。
(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考
生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕
(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?
生独立思考并回答。
全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)
2、探索多个物体平均分,体会分数与除法的关系。
师:把3个蛋糕平均分给4个人,每人分得多少个?
师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。
(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。
方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。
方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。
(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)
(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4
(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。
学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)
3、总结概括分数与除法之间的关系。
1÷4=(个)3÷4=(个)
5÷7=(个)3÷5=(个)
师:观察黑板上的这些算式,你发现了什么?
三、观察算式,概括分数与除法的关系。
(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的'发现和同学交流一下。
(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。
师强调:相当于
(3)师:请每个同学看着这些算式说一说分数与除法的关系。
(师板书):被除数÷除数=被除数/除数
提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?
生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。
(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b
讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)
师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)
小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。
三、练习巩固应用
1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=
2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?
把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
四、全课小结今天这堂课你有什么收获?还有什么问题吗?
分数除法教案 篇14
教学目标:
能力目标:
培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:
提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:
解决实际问题。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:
小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的`量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
分数除法(三)
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
分数除法教案 篇15
教材分析:
《分数与除法》是北师大版小学数学五年级上册第三单元《分数》第五课时的教学内容。
在学生第一学段初步认识分数、体验分数产生、理解分数的意义、读写一些简单分数的基础上,在本册教材的第三单元前四课时,学生结合具体情境,再次认识分数,大大丰富了学生的感性认识。本节教学内容重视引导学生在观察比较中发现分数与除法的关系,在此基础上探索假分数与带分数的互化方法。教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。在此基础上引导学生探索假分数与带分数的.互化方法。它是学生进一步学习分数基本性质的基础。
设计理念:
1、重视知识的获取过程,树立新的教学观。
数学课程标准指出:把只关注知识结果转向要重视知识结果,更要关注获取知识的过程,以被动听讲和练习为主的方式,是难以引起学生思考的。这节课,我不想把知识、结果直接告诉给学生,而是为学生探索发现新知创造机会,给他们提供一些感兴趣的、有思考价值的数学材料,让学生通过观察、分析、比较、小组讨论等活动来获取知识。
2、重组教材,树立新的教材观。
新课程主张用教材教,而不是教教材。教师要由对教材的挖掘者、执行者走向课程开发的研究者、设计者。本节课,我对教材进行分析后,把原来教材2课时放在一个课时教学,体现了大容量的课堂。
教学目标:
1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。
教学重点:
1、掌握分数与除法的关系,会用分数表示除法的商。
2、运用分数与除法的关系,正确进行假分数与带分数的互化。
教学教法:
为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。
教学过程:
一、情境导入,引出新知。
课件播放分饼情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出除法与分数这两个教学内容的主角。
二、探究发现,归纳认知。
1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习
(1)、把a块饼平均分成8份,每份是多少块?
(2)、把a块饼平均分成b份,每份是多少块?
学生先写出除法算式,再用分数表示结果,教师板书
12=1/2块
94=9/4块
a8=a/8块
ab=a/b块
通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。
2、归纳认知,明确关系。
(1)、学生观察思考:分数和除法有怎样的关系?
(2)、汇报发现。
板书:被除数 除数=
(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?
学生讨论得出:分母不能为0。
板书:(除数不为0)。
3、尝试用字母表示。
4、及时练习。
23= 87= 165= 1012=
5/6= ()() 13/15=()( )
12/7= ()() 100/6= ()( )
(二)假分数与带分数的互化。
怎样把7/3化成带分数呢?怎样把 2 化成假分数?
1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。
2、检测合作学习效果。
3、师做针对性点评。
4、及时练习。
课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。
四、全课小结,学生谈收获。
学生总结出本课的知识点,对本节课的学习形成一个完整的认识。
板书设计:
板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。
分数除法教案 篇16
教学目标:
1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。。
二、新课讲授
1.教学例1:出示题目
(1)列出算式。
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的.3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7——11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
【分数除法教案】相关文章:
《分数与除法》教案04-03
分数除法教案优秀11-21
《分数与除法的关系》教案07-27
分数与除法的关系教案12-05
分数除法教案15篇02-10
分数除法教案优秀[精]05-08
稍复杂的分数除法教案02-21
有关分数除法教案4篇04-27
小学数学分数除法教案02-14