《方程》教案

时间:2024-11-01 15:11:15 教案 我要投稿

《方程》教案

  作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?下面是小编收集整理的《方程》教案,欢迎大家分享。

《方程》教案

《方程》教案1

  教学目标:

  1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

  2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

  教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的`方法。

  教学难点:验根的方法。分式方程增根产生的原因。

  教学准备:小黑板。

  教学过程:

  复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

  (1);(2);(3);(4);

  (5);(6);(7);(8)。

  讲授新课:

  1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

  2.讨论分式方程的解法:

  (1)复习解方程时,怎样去分母?

  (2)讲解例1:解方程(按课文讲解)

  归纳:解分式方程的基本思想:

  分式方程整式方程

  (3)讲解例2:解方程(按课文讲解)

  归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

  想一想:产生增根的原因是什么?

  巩固练习:P1451t,2t。

  课堂小结:什么叫做分式方程?

  解分式方程时,为什么要检验?怎样检验?

  布置作业:见作业本。

《方程》教案2

  教学目标:

  1、系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。

  2、培养和提高学生的学习能力。

  教具准备:

  自制幻灯片课件。

  教学过程:

  一、创设情境。

  1、(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。

  2、让学生根据出示的信息,提出数学问题。

  学生可能提出以下问题

  (1)9个足球多少钱?

  (2)b个篮球多少钱?

  (3)篮球的单价比足球的单价多多少钱?

  (4)篮球和足球一共多少钱?

  3、学生说出怎样表达这些问题的结果。(教师板书)

  4、引导学生观察黑板上的式子,看一看有什么特点?

  二、系统整理

  1、提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?

  (让学生以小组为单位,合作整理学过的运算定律和计算公式。)

  2、引导学生交流小组整理的结果。教师板书

  a+b=b+a v=sh

  a+(b+c)=(a+b)+c v=abh

  a×b=b×c s=ab

  a×(b×c)=(a×b) ×c s=ah

  a×(b+c)=a×b+a×c ……

  运算定律 计算公式

  3、在书写数字与这字母相乘、字母与字母相乘时,应注意什么?

  完成84页上做一做的内容。

  4、启发学生谈一谈,用字母表示数、表示数量关系有什么作用?

  5、在用字母表示数的过程中,我们黙认“x”表示什么样的'数?

  6、让学生填空:含有未知数的等式叫做( )

  求“x”值的过程叫做( )

  7、让学生说说解方程的依据是什么?

  8、学生解方程并订正结果。

  9、通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。

  10、(课件出示)学校组织远足活动。计划每小时走3。8千米,3小时到达目的地。实际2。5小时走完了原定路程,平均每小时走了多少千米?

  11、学生独立解决问题,教师课堂巡视,了解学生解决问题情况。

  12、班内交流结果。并让学生将解题过程演板。

  13、谈一谈在用方程解决问题的过程中,应注意什么?

  三、归纳小结。

  1、让学生说一说这节课我们对哪项知识做了复习和整理?

  2、师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。

  四、实践应用。

  1、完成85页练习十五的习题。

  2、 填空

  (1)小华每分钟跑a米,6分钟跑( )米。

  (2)三个连续的偶数,中间一个是M,另外两个是( )和( )。

  (3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。

  (4)老王今年a岁,小林今年(a—18)岁,再过18年,他们相差( )岁。

  (5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。

  2、判断

  (1)含有未知数的式子叫方程。( )

  (2)方程一定是等式,等式一定是方程。( )

  (3)6x=0是方程。( )

  (4)因为a×6可以写成a·6,所以7×6可以写成7·6。( )

  3、下面的式子中,哪些是方程?

  (1)5x (2)6x+1=6

  (3)15—3=12 (4)4x+1<9

  4、解方程

  2x+9=27 x—0。5= 8+0。3x=14

  8x—3×9=37 22。3x+11x=66。6 x— x=12

  (要求学生以竞赛的形式进行计算)

  5、趣味数学城

  (1)、一只青蛙一张嘴,两只眼睛四条腿。

  两只青蛙两张嘴,四只眼睛八条腿。

  三只青蛙三张嘴,六只眼睛十二条腿。

  四只青蛙四张嘴,八只眼睛十六条腿。

  N只青蛙( )张嘴,( )只眼睛( )条腿。

《方程》教案3

  教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3、培养学生获取信息,分析问题,处理问题的能力。

  教学难点均是从实际问题中寻找相等关系。

  知识重点

  教学过程(师生活动)设计理念

  情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:

  问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

  教师可以在学生回答的基础上做回顾小结

  问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)

  教师可以在学生回答的基础上做回顾小结:

  1、问题涉及的三个基本物理量及其关系;

  2、从知的信息中可以求出汽车的速度;

  3、从路程的角度可以列出不同的算式:

  问题3:能否用方程的知识来解决这个问题呢?用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。

  培养学生读图的能力和思维的广阔性。

  这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。

  提出问题:引出新课

  学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.

  如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

  2、教师引导学生寻找相等关系,列出方程.

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

  问题3:根据车速相等,你能列出方程吗?

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

  依据“王家庄至青山路段的车速=青山至秀水路段的车速”

  可列方程:

  3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

  4、归纳列方程解决实际问题的两个步骤:

  (1)用字母表示问题中的未知数(通常用x,y,z等字母);

  (2)根据问题中的相等关系,列出方程.渗透列方程解决实际问题的思考程序。

  理解题意是寻找相等的关系的前提。

  考虑到学生寻找关系的难度,教师在此处有意加以引导。

  教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。

  举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、

  建议按以下的顺序进行:

  (1)学生独立思考;

  (2)小组合作交流;

  (3)全班交流.

  如果直接设元,还可列方程:

  如果设王家庄到青山的路程为x千米,那么可以列方程:

  依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

  ,再列出方程=60

  说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.通过比较能使学生学会到从算式到方程是数学的进步。

  问题的开放性有利于培养学生思维的发散性。

  这样安排的目的是所有的学生都有独立思考的时间和合作交流的时间。

  初步应用

  课堂练习1、例题(补充):根据下列条件,列出关于x的方程:

  (1)x与18的和等于54;

  (2)27与x的差的一半等于x的4倍.

  建议:本例题可以先让学生尝试解答,然后教师点评.

  解:(1)x+18=54;

  (2)(27-x)=4x.

  列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

  2、练习(补充):

  (1)列式表示:

  ①比a小9的数;②x的2倍与3的和;

  ③5与y的差的一半;④a与b的7倍的和.

  (2)根据下列条件,列出关于x的方程:

  (1)12与x的差等于x的2倍;

  (2)x的三分之一与5的和等于6.补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。

  小结与作业

  课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的.方式进行,主要围绕以下问题:

  1、本节课我们学了什么知识?

  2、你有什么收获?

  说明方程解决许多实际问题的工具。

  本课作业1、必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。

  2、选做题:根据下列条件,用式表示问题的结果:

  (1)一打铅笔有12支,m打铅笔有多少支?

  (2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?

  (3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本教学设计着力体现以下几方面特点:

  1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.

  2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.

  3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步

  引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.

  4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数

  学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.

《方程》教案4

  教学目标:

  1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

  2、会用方程表示简单的等量关系,会列方程解决简单问题。

  3、感受式与方程在解决问题中的价值,培养初步的代数思想。

  教学重点:

  明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

  教学难点:

  找等量关系式,用方程解决实际问题。

  教学过程:

  一、导入

  我们都记得这首儿歌

  一只青蛙一张嘴,两只眼睛四条腿;

  两只青蛙两张嘴,四只眼睛八条腿;

  请你来接下句

  三只青蛙xxxxxxxxx;

  五只青蛙呢?

  N只青蛙呢?

  一首小小的`儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

  二、进行复习

  1、用字母表示数

  (1)同学们想一想,在数学中有哪些地方常用字母来表示?

  生列举:数量关系(路程、速度、时间 即s=vt)

  计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

  运算定律(加法结合律:a+b+c=a+(b+c)等)

  (2)请同桌之间相互举两个这样的例子。

  (3)你们知道为什么用字母表示数吗?

  (4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

  (5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

  算法有两种:其一:算术方法:160÷(5+3)=20

  依据:总插秧数量÷时间=单位时间量

  其二:列方程:x(5+3)=160

  依据:单位时间量×时间=总插秧数量

  观察比较:以上两种解法有哪些相同点和不同点?

  相同点:都是根据数量间的相等关系列式。

  不同点:解法一:以已知推出未知,是算术法。

  解法二:把未知数用x表示,列出含有未知数的等式,即方程。

  同学们想一想,等式和方程有什么联系和区别?

  方程有哪些性质呢?(等式 、含有未知数)

  2、方程

  (1)判断下列哪些是方程(说明理由)

  7+8=3×5 4a+5b a+12=89

  4x=y 3+100>25+y 6+x=0。5×3

  (2)你会解方程吗?从中选择一个试一试。

  (3)如何判断方程的解是否正确?

  (4)列方程解应用题的解题步骤是怎样的?

  讨论后得出:①弄清题意,找出未知数,并用x表示;

  ②找出应用题中数量之间的相等关系,列方程;

  ③解方程;

  ④检验,写出答案。

  3、列方程解决问题

  (1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

  请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

  引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

  (2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

  (3)练习

  ①练一练1

  ②师展示习题:说出下面每组数量之间的相等关系。

  (1)女生人数,男生人数,全班人数;

  (2)苹果的重量,梨的重量,梨比苹果少的重量。

  (3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

  (4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

  ③课本练一练5

  三、小结

  说一说你今天的收获在哪里?

《方程》教案5

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1、教学重点:椭圆的定义及其标准方程

  2、教学难点:椭圆标准方程的推导

  (三)三维目标

  1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

  3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的.信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6、例题讲解:通过例题规范学生的解题过程。

  7、巩固练习:以多种题型巩固本节课的教学内容。

  8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

  9、课后作业:面对不同层次的学生,设计了必做题与选做题。

  10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

《方程》教案6

  教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  教学重点:

  理解并掌握方程的意义。

  教学难点:

  会列方程表示数量关系。

  教学过程:

  一、教学例1

  1.出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  2.引导

  (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?

  二、教学例2

  1.出示例2的天平图,引导学生分别用式子表示天平两边物体的`质量关系。

  2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  三、完成练一练

  1.下面的式子哪些是等式?哪些是方程?

  2.将每个算式中用图形表示的未知数改写成字母。

  四、巩固练习

  1.完成练习一第1题

  先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

  2.完成练习一第2题

  五、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  六、作业

  完成补充习题

  板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

《方程》教案7

  教学内容:教材P47-P48例4 做一做,练习十第4-6题

  教学目的:

  1、使学生进一步理解用字母表示数的意义和作用。

  2、能正确运用字母表示常用数量关系。

  3、能较熟练地利用公式、常用数量关系求值。

  教学重、难点:能正确运用字母表示常用数量关系。

  教学准备:投影仪

  教学过程:

  一、复习。

  1、用字母表示数,有哪些好处?但要注意什么?

  2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。

  3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

  4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

  2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6

  二、新授。

  1、教学例4(1):

  (1)引导学生看书提问:从图、表中你了解到哪些信息?

  A、爸爸比小红大30岁。 B、当小红1岁时,爸爸()岁,……

  师:这些式子,每个只能表示某一年爸爸的年龄。

  (2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

  结合讨论情况师适时板书:

  法1:小红的年龄+30岁=爸爸的年龄

  法2:a+30

  提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

  在式子a+30中,a表示什么?30表示什么?a+30表示什么?

  (a表示小红的年龄,30表示爸爸比小红大的.年龄,a+30即表示爸爸的年龄)

  想一想:a可以是哪些数?a能是200吗?为什么?

  (3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和

  结果填在书上。

  2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

  3、教学例4(2):

  引导学生看书讨论:(可分成四人小组进行讨论)

  (1)从图、表中你了解到哪些信息?

  (2)你能用含有字母的式子表示出人在月球上能举起的质量吗?

  (3)式子中的字母可以表示哪些数?

  (4)图中小朋友在月球上能举起的质量是多少?

  请小组派代表回答以上问题。

  4、总结:今天你学会了什么?有哪些收获?

  三、巩固练习:

  1、独立完成P48做一做 集体评议。

  2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

  3、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)

  四、作业:

  1、独立完成P50 第5题

  2、独立完成P50 第6题

  解答第6题时可提问:u = t = 让学生掌握三种量之间的数量关系。

  注意巡视指导求式子值的书写格式。

  即:S=ut=150×30=4500 (注:这里求出来的值不带单位名称)

  板书: 用字母表示数(二)

  例4(1): 例4(2):

  法1: 小红的年龄+30岁=爸爸的年龄 人在月球上能举起的质量是:6a

  法2: a+30 小朋友在月球上能举起的质量是:

  当a=11时,爸爸的年龄是: 6a=6×15=90

  a=30=11+30=45

《方程》教案8

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.

  (5)进一步理解数形结合的思想方法.

  教学建议

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.

  ②本节的难点是曲线方程的概念和求曲线方程的方法.

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的'对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合.

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式 数学符号语言中含动点坐标 ,的代数方程 简化了的 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.

  教学设计示例

  课题:求曲线的方程(第一课时)

  教学目标

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

  (2)进一步理解曲线的方程和方程的曲线.

  (3)初步掌握求曲线方程的方法.

  (4)通过本节内容的教学,培养学生分析问题和转化的能力.

  教学重点、难点:求曲线的方程.

  教学用具:计算机.

  教学方法:启发引导法,讨论法.

  教学过程

  【引入】

  1.提问:什么是曲线的方程和方程的曲线.

  学生思考并回答.教师强调.

  2.坐标法和解析几何的意义、基本问题.

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程.

  (2)通过方程,研究平面曲线的性质.

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

  【问题】

  如何根据已知条件,求出曲线的方程.

  【实例分析】

  例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线的方程.

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

  证明:(1)曲线上的点的坐标都是这个方程的解.

  设 是线段 的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标 是方程 的解.

  (2)以这个方程的解为坐标的点都是曲线上的点.

  设点 的坐标 是方程①的任意一解,则

  到 、 的距离分别为

  所以 ,即点 在直线上.

  综合(1)、(2),①是所求直线的方程.

  至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设 是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.

  分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

  求解过程略.

《方程》教案9

  教学内容:

  教材第81页1--2题、做一做,练习十六第1---4题

  教学目标:

  1、理解用字母表示数的意义和方法,能用字母表示常见的数量关系。

  2、能根据字母所取的数值,算出含有字母的式子的值。

  3、能通过列方程和解方程解决一些实际问题。

  教学重点:

  能用字母表示常见的数量关系,理解方程的含义。

  教学难点:

  较熟练地解简易方程,并能解决一些实际问题。

  教具准备:

  多媒体课件

  教学过程:

  一、用字母表示数

  1、用字母表示数的作用和意义?

  用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来许多方便。

  2、说一说你会用字母表示什么?

  3、说一说,在含有字母的式子里,书写数与字母、字母与字母相乘时,应注意什么?

  【如】①a乘4.5应该写作4.5a; ②s乘h应该写作sh; ③路程、速度、时间的'数量关系是s=vt.

  4、你还知道哪些用字母表示的数量关系或计算公式?

  如:【用字母表示运算定律】

  加法交换律:____________________________________

  加法结合律:____________________________________

  乘法交换律:____________________________________

  乘法结合律:____________________________________

  乘法分配律:_____________________________________

  【用字母表示公式】

  长方形面积公式:_________________

  正方形面积公式:_____________________

  长方体体积公式:_________________

  正方体体积公式:______________________

  圆的周长:_______________________

  圆的面积:____________________________

《方程》教案10

  【考点及要求】:

  1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.

  2.理解直线的平行关系与垂直关系, 理解两点间的距离和点到直线的距离.

  【基础知识】:

  1.直线方程的五种形式

  名称 方程 适用范围

  点斜式 不含直线x=x1

  斜截式 不含垂直于x=轴的直线

  两点式 不含直线x=x1(x1x2)和直线y=y1(y1y2)

  截距式 不含垂直于坐标轴和过原点的直线

  一般式 平面直角坐标系内的直线都适用

  2.两条直线平行与垂直的判定

  3.点A 、B 间的距离: = .

  4.点P 到直线 :Ax+Bx+C=0的距离:d= .

  【基本训练】:

  1.过点 且斜率为2的直线方程为 , 过点 且斜率为2的直线方程为 , 过点 和 的直线方程为 , 过点 和的直线方程为 .

  2.过点 且与直线 平行的'直线方程为 .

  3.点 和 的距离为 .

  4.若原点到直线 的距离为 ,则 .

  【典型例题讲练】

  例1.一条直线经过点 ,且在两坐标轴上的截距和是6,求该直线的方程.

  练习.直线 与两坐标轴所围成的三角形的面积不大于1,求 的取值范围.

  例2.已知直线 与 互相垂直,垂足为 ,求的值.

  练习.求过点 且与原点距离最大的直线方程.

  【课堂小结】

  【课堂检测】

  1.直线 过定点 .

  2.过点 ,且在两坐标轴上的截距互为相反数的直线方程是 .

  3.点 到直线 的距离不大于3,则 的取值范围为 .

《方程》教案11

  教学内容:

  教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

  教学目标:

  1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的'认知结构。

  2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

  教学过程:

  一、回顾与

  1、谈话引入。

  本单元我们学习了哪些内容?

  你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

  在小组中互相说说。

  2、组织讨论。

  (1)出示讨论题。

  (2)小组交流,巡视指导。

  (3)汇报交流。

  你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

  (等式与方程都是等式;等式不一定是方程,方程一定是等式。)

  (含有未知数的等式是方程。)

  (等式性质:)

  (求方程中未知数的值的过程叫做解方程。)

  3、。

  同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

  二、练习与应用

  1、完成第1题。

  (1)独立完成计算。

  (2)汇报与展示,说说错误的原因及改正的方法。

  2、完成第2题。

  (1)学生独立完成。

  (2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

  3、完成第3题。

  (1)列出方程,不解答。

  (2)你是怎样列的?怎么想的?大家同意吗?

  (3)完成计算。

  4、完成第4题。

  单价、数量、总价之间有怎样的数量关系?

  指出:抓住基本关系列方程,y也可以表示未知数。

  三、课堂

  通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案12

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的标准方程及有关运用

  教学难点:

  标准方程的'灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  ⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习:

  1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

《方程》教案13

  教学内容:

  教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

  教学目标:

  1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

  2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

  教学重点:

  理解等式的`两边同时加上或减去同一个数,所得结果仍然是等式。

  教学难点:

  会用等式的这一性质解简单的方程。

  教学过程:

  一、教学例3

  1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

  提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

  谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

  2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

  3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

  谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

  启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

  4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

  5.做练一练的第1题

  二、教学例4

  1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

  2.讲解:要求出方程中未知数的值,要先写解,要注意把等号对齐。

  3.完成试一试

  4.完成练一练

  提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

  三、巩固练习

  1. 做练习一的第3题

  2.做练习一的第4题

  3.做练习一的第5题

  四、全课小结

  提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

  五、作业

  完成补充习题。

  板书设计:

  等式性质和解方程

  等式的性质 解方程

  50=50 50+10=50+10 解: X+10=50

  x+a=50+a 50+a-a =50+a-a X-10=50-10

  X=40

  检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

《方程》教案14

  教学内容:

  p53——54练习十一1,2,3

  教学目标:

  1、 通过观察天平演示,使学生初步理解方程的意义;

  2、 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

  3、 培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:

  判断一个式子是不是方程;初步理解方程的意义。

  课前准备:

  课件,习题板

  教学过程:

  一、复习旧知,激趣导入

  同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

  二、出示学习目标

  1、初步理解方程的意义,会判断一个式子是否是方程

  2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的`能力。

  三、学习过程。

  (一)认识天平

  (二)新课学习

  自学指导(一)。

  自学p53, 分别说一说图1,图2,,显示的信息。

  图1天平两边平衡,一个空杯重100克。

  图2在空杯里加一杯水后天平不平衡了。

  再看图3说说图3 显示的信息。

  天平1杯子和里面的水比200克法码重

  天平2杯子和里面的水比300克法码轻

  请用算式表示图3数量关系。

  天平1、100+x>200

  天平2、100+x<300

  再看图4说说图4 显示的信息,请用算式表示图4数量关系

  100+x=250

  观察比较下列算式说说你的发现

  观察比较

  100+x>200

  100+x<300

  100+x=250

  前面两个算式两边不相等,后面一个算式两边是相等的。

  教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

  写出几个等式

  请学生把这里的等式分类,并说说你们是如何分类的?

  20+30=50

  20+χ=100

  50×2=100

  14—8=6

  3y=180

  78× 3=234

  100+2y=3×50

  学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

  教师总结:含有未知数的等式,称为方程。(板书)

  请大家写出几个方程。

  四、小结:回答什么是方程?

《方程》教案15

  教学目标

  1.使学生初步理解“方程”“方程的解”和“解方程”的含义.

  2.初步掌握解简易方程的方法并会检验.

  教学重点

  使学生初步掌握解方程的方法和书写格式.

  教学难点

  帮助学生建立“方程”的概念,并会应用.

  教学设计

  一、复习准备

  (一)口算下面各题.

  30+( )=50 ( )×2=10

  (二)列式.

  1.一支钢笔 元,2支钢笔多少元?

  2. 与4的和.

  二、新授教学

  (一)方程的意义

  1.介绍天平

  这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

  2.引出方程

  (1)出示图片:天平1

  教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

  (2)出示图片:天平2

  教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

  教师板书:20+?=100

  教师说明:这个未知数“?”,如果用 来表示就可以写成20+ =100.

  (3)出示图片:篮球

  教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

  教师板书:

  3.方程的意义.

  教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

  相同点:都是相等的式子.

  不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

  教师板书:象这种含有未知数的等式,叫方程.

  教师强调:含有未知数、等式

  4.思考:方程和等式之间到底是什么关系呢?

  (1)出示图片:等式与方程

  (2)小结:所有的方程都是等式,但是等式不一定都是方程.

  (二)教学例1

  1.方程的解

  教师提问:在 中, 等于多少时方程左边和右边相等?

  在 中, 等于多少时方程的左边和右边相等?

  教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

  如: 是方程 的解

  是方程 的解

  2.解方程

  教师板书:求方程的解的过程叫做解方程.

  3.教学例1

  例1.解方程 -8=16

  (1)教师提问:解方程先写什么?根据什么计算?

  (2)教师板书:

  解:根据被减数等于减数加差

  (3)怎样检查解方程是否正确?

  检验:把 代入原方程,

  左边 ,右边

  左边=右边

  所以 是原方程的解.

  4.讨论:“方程的解”和“解方程”有什么区别?

  三、课堂小结

  今天你学到了哪些知识?什么叫方程?方程的'解和解方程有什么区别?

  四、巩固练习

  (一)填空

  1.含有未知数的( )叫做方程.

  2.使方程左右两边相等的( ),叫做方程的解.

  3.求方程的解的( )叫解方程.

  4.下面的式了中是等式的有( );

  是方程的有( ).

  (二)判断,对的在括号里打√,错的打×.

  1.等式都是方程.( )

  2.方程都是等式.( )

  3. 是方程 的解.( )

  4. 也是方程.( )

  (三)选择正确答案填在括号内.

  1. 的解是( )

  ① ②

  2. 的解是( )

  ① ②

  3. 这个式子是( )

  ①是方程 ②是等式 ③既是方程又是等式

  4. 是方程( )的解

  ① ②

  五、课后作业

  (一)解下列方程.(第一行两小题要写出检验过程.)

  (二)用方程表示下面的等量关系,并求出方程的解.

  1. 加上35等于91.

  2. 的3倍等于57.

  3. 减3的差是6.

  4.7。8除以 等于1。3.

  六、板书设计

  解简易方程

  含有未知数的等式叫做方程.使方程左右两边相等的未知数的值,叫做方程的解.

  求方程的解的过程叫做解方程.

  例1 解方程

  解:根据被减数等于减数加差

  检验:把 代入原方程,

  左边 ,

  右边 ,

  所以 是原方程的解.

  教案点评:

  该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。

  探究活动

  不说也知道

  活动目的

  1.通过游戏,激发学生学习数学的兴趣.

  2.培养学生用数学知识解决实际问题的能力.

  活动过程

  1.教师表演数学魔术.

  数学魔术:学生任意想好一个数,然后按照教师的要求进行运算:把想好的数加上2,乘上3,减去6,再减去原来所想的数.把最后的结果告诉教师,教师可以马上知道学生原来所想的数.

  2.学生分小组探讨其中的秘密.

  魔术揭密:可以假设学生所想的数为 ,按照教师的要求就是加上2( +2),乘上3

  (3 +6),减去6(3 ),再减去原来所想的数(2 ).也就是说最后的计算结果是原来所想数的2倍.

  3.学生自己设计数学魔术.

  4.分小组进行表演.

【《方程》教案】相关文章:

方程的教案04-13

圆的方程的教案09-16

认识方程教案02-21

解方程教案12-04

《方程的意义》教案05-16

“解方程”教案04-26

《方程》教案范文05-15

《方程的意义》教案10-25

分式方程教案11-20

【优选】分式方程教案09-05