因式分解教案

时间:2024-10-10 13:26:45 教案 我要投稿

【精品】因式分解教案4篇

  作为一名无私奉献的老师,通常需要准备好一份教案,借助教案可以让教学工作更科学化。来参考自己需要的教案吧!下面是小编整理的因式分解教案4篇,希望能够帮助到大家。

【精品】因式分解教案4篇

因式分解教案 篇1

  教学设计思想:

  本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的.。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  教学目标

  知识与技能:

  会用平方差公式对多项式进行因式分解;

  会用完全平方公式对多项式进行因式分解;

  能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

  提高全面地观察问题、分析问题和逆向思维的能力。

  过程与方法:

  经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

  情感态度价值观:

  通过学习进一步理解数学知识间有着密切的联系。

  教学重点和难点

  重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

  难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

  关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

因式分解教案 篇2

  整式乘除与因式分解

  一.回顾知识点

  1、主要知识回顾:

  幂的运算性质:

  aman=am+n(m、n为正整数)

  同底数幂相乘,底数不变,指数相加.

  =amn(m、n为正整数)

  幂的乘方,底数不变,指数相乘.

  (n为正整数)

  积的乘方等于各因式乘方的积.

  =am-n(a≠0,m、n都是正整数,且m>n)

  同底数幂相除,底数不变,指数相减.

  零指数幂的概念:

  a0=1(a≠0)

  任何一个不等于零的数的零指数幂都等于l.

  负指数幂的概念:

  a-p=(a≠0,p是正整数)

  任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

  也可表示为:(m≠0,n≠0,p为正整数)

  单项式的乘法法则:

  单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

  单项式与多项式的乘法法则:

  单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

  多项式与多项式的乘法法则:

  多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

  单项式的除法法则:

  单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的.字母,则连同它的指数作为商的一个因式.

  多项式除以单项式的法则:

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

  3、因式分解:

  因式分解的定义.

  把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

  掌握其定义应注意以下几点:

  (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

  (2)因式分解必须是恒等变形;

  (3)因式分解必须分解到每个因式都不能分解为止.

  弄清因式分解与整式乘法的内在的关系.

  因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

  二、熟练掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

  (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

  (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

  2、公式法

  运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

  常用的公式:

  ①平方差公式:a2-b2=(a+b)(a-b)

  ②完全平方公式:a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

因式分解教案 篇3

  教学目标:

  1、进一步巩固因式分解的概念;

  2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

  (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

  (7)、2πR+2πr=2π(R+r)因式分解

  2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

  分解因式要注意以下几点:

  (1)。分解的对象必须是多项式。

  (2)。分解的结果一定是几个整式的乘积的形式。

  (3)。要分解到不能分解为止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的'定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  试一试把下列各式因式分解:

  (1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

  (3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例题讲解

  例1、分解因式

  (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知识应用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?

  五、拓展应用

  1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。

  五、课堂小结

  今天你对因式分解又有哪些新的认识?

因式分解教案 篇4

  教学目标:

  1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解 4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2-b2的`值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.

  分解因式要注意以下几点: (1).分解的对象必须是多项式.

  (2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  试一试把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例题讲解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知识应用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除吗?还能被哪些整数整除?

  四、拓展应用

  1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

  五、课堂小结:今天你对因式分解又有哪些新的认识?

【因式分解教案】相关文章:

因式分解教案06-26

(经典)因式分解教案08-23

因式分解教案(热)10-22

实用的因式分解教案三篇10-03

因式分解教案锦集八篇08-21

关于因式分解教案合集6篇07-12

因式分解教案集锦7篇07-29

因式分解教案模板集锦7篇07-12

因式分解教案范文合集8篇08-01

因式分解教案锦集7篇06-12