人教版六年级下册数学教案

时间:2024-05-07 20:26:24 教案 我要投稿

人教版六年级下册数学教案模板集合6篇

  作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编为大家收集的人教版六年级下册数学教案6篇,仅供参考,希望能够帮助到大家。

人教版六年级下册数学教案模板集合6篇

人教版六年级下册数学教案 篇1

  教学目标:

  1、学生通过小组合作学习对单元知识进行概括,建立知识结构;

  2、会解决实际问题;

  3、归纳整理的能力及解决问题的能力;

  4、积极探索、团结协作的精神,获得收获的成功感。

  教学重点:运用所学知识解决实际问题。、

  教学难点:归纳整理,形成知识脉络。

  教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。

  教学过程:

  一、引发矛盾,引入课题

  猜一猜:老师今年多少岁了?

  [投影]老师年龄数的十位上是最小的奇数型质数,个位上的数既不是质数也不是合数。你们说老师今年多少岁了?

  猜这个谜语,我们需要哪些数学知识呢?

  说得有理,我们学过有关数的知识很多,就像刚才我们在猜谜时就用到了数的整除中的一些知识。今天我们就一起来整理复习数的整除,板书:数的整除复习

  齐读课题,你想到什么?

  那好吧,我们就开始复习。

  二、梳理知识,形成脉络

  1、 集中呈现

  现在请大家以小组为学习单位,按照你们的想法,把学过的数

  的整除这部分知识整理在下发的纸上。(请大家认真讨论商量,并由组长记录)待会儿我们要比一比,看哪个小组整理的既完整,又科学合理。巡视

  2、 逐个梳理

  1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。

  2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)

  3)整理完善知识结构

  在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)

  组织学生汇报交流、讨论。

  提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)

  说得真好!这些知识之间是有密切联系的。

  对于今天整理出来的数的整除脉络图,大家有什么想法?

  通过整理,可以使这部分知识更加条理化、系统化。

  3、 自学课本,看一看还有什么不清楚的问题?

  三、应用、解决问题

  1、填空题

  在1----20的自然数中,有( )个奇数,有( )个偶数,有( )个质数,有( )个合数,奇数中的( )是合数,偶数中的( )是质数,既不是质数也不是合数的数是( )。

  2、能同时被2、5、3整除的最小两位数是( ),最大三位数是( )。

  3、选择题

  (1)一个合数的约数有( )

  A) 1个 B) 2个 C) 3个 D) 4个

  (2)如果a 和 b 是互质数,那么它们的最小公倍数是( )

  A) a B) b C) a b D) 1

  4、判断题

  (1)整除一定是除尽,除尽不一定整除。 ( )

  (2)相邻的两个自然数一定互质。 ( )

  (3)所有偶数都是合数。 ( )

  (4)24分解质因数 24 = 22231 。 ( )

  (5)一个自然数的最大约数一定等于它的最小公倍数。 ( )

  5、把下面的数按照不同的标准分成两类,你能想到几种?

  2 15 8 17 20

  四、强化总结,拓展迁移

  今天我们共同上了一节数的整除的整理与复习课,通过这节课的学习,我觉得大家特别聪明、好学,老师很高兴与大家共同渡过了这美好的40分钟,而且我们已经是 多次合作,所以我想与大家做好朋友,你们愿意吗?

  老师想把自己的.手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?

  老师的手机号码是11位数字,每一位数字依次是:

  1)是质数也不是合数;

  2)最小奇数与最小质数的和;

  3)最小的自然数;

  4)质数中最小的两个数的和;

  5)既是质数,又是偶数;

  6)最小质数与最小合数的积;

  7)有约数2 和3 的一位数;

  8)自然数中最小的奇数;

  9)最大约数与最小倍数都是 7 的数;

  10)所有自然数的约数;

  11)最大的一位数 。

  同学们以后有事需要老师帮忙,随时call我。

  这节课上到这里可以吗?

人教版六年级下册数学教案 篇2

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的`意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇3

  教学内容:

  九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

  教学目标:

  1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

  2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

  3、引导学生探索和解决问题,体验转化及极限的思想方法。

  教学重点:圆柱体体积的计算.

  教学难点:理解圆柱体体积公式的推导过程.

  教具:多媒体课件、圆柱形容器、水、橡皮泥。

  教学过程:

  一、激凝导入

  师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的.体积?

  (2)生回答。

  2、出示橡皮泥捏成的圆柱体。

  那你有办法求出这个圆柱体橡皮泥的体积吗?

  生(热情的):老师将它捏成长方体或正方体就可以了!

  3、创设问题情境。

  师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

  那怎么办?

  学生试说出自己的办法。

  师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验、探究新知

  1、推导圆柱的体积公式。

  师:你们打算怎么去研究圆柱的体积?

  小组同学讨论研究的方法。

  2、学生动手操作感知

  (1)学生以小组为单位操作体验。(操作学具,进行拼组)。

  (2)学生小组汇报交流:

  近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

  (3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

  3、教师课件演示圆柱转化成长方体的过程。

  4、师生共同推导出圆柱的体积公式:

  长方体的体积=底面积高

  圆柱的体积=底圆柱面积高

  V = Sh

  5、巩固公式

  ①V、S、h各表示什么?

  ②知道哪些条件就可以求圆柱的体积?

  а、知道底面积和高可以直接用公式计算圆柱的体积;

  b、知道底面半径和高,可以先计算出底面积,再计算体积;

  c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

  学生回答后师板书。

  6、教学例4、例5。

  课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

  三、实践练习

  1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

  2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

  同学们,你们知道小林是怎样想的吗?

  四、课堂总结;

  通过本节课的学习,你有什么收获?

人教版六年级下册数学教案 篇4

  教材及学情简析:

  本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

  此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

  教学目标:

  1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

  2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

  3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

  教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

  教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

  教学准备:课件、圆柱体、长方体、正方体、剪刀等。

  教学过程:

  一、温故对比引圆柱

  1.出示圆。

  还记得圆是什么图形吗?(平面图形)

  2.出示柱。

  老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

  (由圆到圆柱,推想发现圆柱是立体图形。)

  3.想圆柱。

  相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

  (唤起学生对圆柱的已有经验。)

  4.摸圆柱。

  老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

  5.谈圆柱。

  在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

  6.引新课。

  看来这圆柱还真是与众不同,今天我们就来好好地认识它。

  【设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

  二、独立自主学圆柱

  1.认识圆柱的几何图形。

  (出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

  2.自学课本,认识圆柱各部分的名称。

  同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

  3.分享自学成果。

  4.加深理解,学生互相指一指圆柱的底面、侧面和高。

  我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

  【设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

  三、猜想验证探圆柱

  1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

  如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

  除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

  怎样剪才能得到长方形?

  (通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

  2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

  为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

  3.汇报并总结圆柱的侧面展开图的特征。

  小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

  4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

  ⑴ 根据圆柱的侧面选择合适的底面。

  ⑵ 根据圆柱的底面选择合适的侧面。

  【设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

  四、梳理新知用圆柱

  1.梳理新知。

  ⑴ 师导。

  同学们看,我们今天学到了关于圆柱的什么知识?

  ⑵ 生谈。

  请同学们当推销员介绍一下你所认识的圆柱

  2.运用新知。

  ⑴ 基本练习(以书面的形式出现)。

  ① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

  ② 圆柱有一个曲面叫做( )面。

  ③ 圆柱两个底面之间的'距离叫做( )。圆柱有( )条高,它们的长度都( )。

  ④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

  ⑵ 判断说明。

  判断下面的图形是不是圆柱,为什么?

  3.回归生活,发现圆柱。

  在生活中,你看见过哪些物体是圆柱形的?

  【设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

  五、欣赏了解悟圆柱

  1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

  圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

  2.介绍圆柱的高在生活中的其他叫法。

  (高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

  同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

  4.放大圆柱的内涵介绍可乐罐的奥秘。

  有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

  【设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

  六、学以致用做圆柱

  课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

  【设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

  板书设计:

  认识 圆柱

  2个底面:是完全相同的两个圆

  无数条高:两个底面之间的距离

  【设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

人教版六年级下册数学教案 篇5

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的`方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版六年级下册数学教案 篇6

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

  (二)核心能力

  经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (三)学习目标

  1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (四)学习重点

  了解简单的鸽巢问题,理解“总有”和“至少”的含义。

  (五)学习难点

  运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.谈话导入

  师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

  师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

  2.问题探究

  (1)呈现问题,引出探究

  出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

  师:“总有”是什么意思?“至少”有2支是什么意思?

  学生自由发言。

  预设:一定有

  不少于两只,可能是2支,也可能是多于2支。

  就是不能少于2支。

  (2)体验探究,建立模型

  师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

  小组活动:学生思考,摆放。

  ①枚举法

  师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

  预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

  师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

  (不一定,也可能放在其它笔筒里。)

  师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

  预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

  师:这种放法可以记作(3,1,0)

  师:这3支铅笔一定要放在第一个笔筒里吗?

  (不一定)

  师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

  预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

  师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

  预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

  预设4:还可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  师:还有其它的放法吗?

  (没有了)

  师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

  师:这几种放法如果用一句话概括可以怎样说?

  (装得最多的笔筒里至少装2支。)

  师:装得最多的那个笔筒一定是第一个笔筒吗?

  (不一定,哪个笔筒都有可能。)

  【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

  ②假设法

  师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

  预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

  师:“平均放”是什么意思?

  预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

  师:为什么要先平均分?

  学生自由发言。

  引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

  师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

  师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

  【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

  (3)提升思维,建立模型

  ①加深感悟

  师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

  预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:把7支笔放进6个笔筒里呢?还用摆吗?

  学生自由发言。

  师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

  师:你发现了什么?

  预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:你的发现和他一样吗?

  学生自由发言。

  师:你们太了不起了!

  师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

  练一练:

  师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

  师:说说你的想法。

  师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

  介绍狄利克雷:

  师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

  ②建立模型

  出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

  学生独立思考、讨论后汇报:

  师:怎样用算式表示我们的想法呢?生答,板书如下。

  7÷3=2本……1本(2+1=3)

  师:如果有10本书会怎么样能?会用算式表示吗?写下来。

  出示:

  把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  10÷3=3本……1本(3+1=4)

  师:观察板书你有什么发现?

  预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

  师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

  学生讨论,汇报:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

  师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

  预设:我认为根“商”有关,只要用“商+1”就可以得到。

  师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

  引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

  鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

  【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

  3.巩固练习

  (1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

  (2)第69页的做一做第1、2题。

  4.全课总结

  师:通过这节的学习,你有什么收获?

  小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

  (三)课时作业

  1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

  答案:2名。

  解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

  2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

  答案:8名。

  解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

  第二课时鸽巢原理

  中原区汝河新区小学师芳

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

  (二)核心能力

  在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

  (三)学习目标

  1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

  2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

  (四)学习重点

  引导学生把具体问题转化为“抽屉原理”。

  (五)学习难点

  找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.情境导入

  师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

  师:神奇吧!你们想不想表演一个呢?

  师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

  在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

  2.探究新知

  (1)学习例3

  ①猜想

  出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

  预设:2个、3个、5个…

  ②验证

  师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

  可以用表格进行整理,课件出示空白表格:

  学生独立思考填表,小组交流。

  全班汇报。

  汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

  课件汇总,思考:从这里你能发现什么?

  教师:通过验证,说说你们得出什么结论。

  小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

  ③小结

  师:为什么球的个数一定要比抽屉数多?而且是多1呢?

  预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

  师:说得好!运用学过的`知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

  板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

  (2)引导学生把具体问题转化成“抽屉原理”。

  师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

  思考:①摸球问题与“抽屉原理”有怎样的联系?

  ②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

  学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

  从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

  结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

  3.巩固练习

  (1)完成教材第70页“做一做”第1题。

  (2)完成教材第70页“做一做”第2题。

  4.课堂总结

  师:这节课你学到了什么知识?谈谈你的收获和体验。

  (三)课时作业

  1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

  答案:5只。

  解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

  2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

  答案:16条。

  解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案10-13

人教版六年级下册数学教案06-18

人教版六年级下册数学教案04-15

六年级下册人教版数学教案6篇07-31

六年级下册人教版数学教案(6篇)09-06

人教版六年级下册数学教案模板04-08

人教版小学六年级下册数学教案07-29

人教版六年级下册数学教案7篇07-31

人教版六年级下册数学教案10篇09-04

人教版六年级下册数学教案5篇06-14