人教版六年级下册数学教案

时间:2022-01-05 11:36:59 教案 我要投稿

人教版六年级下册数学教案集合6篇

  作为一名默默奉献的教育工作者,就难以避免地要准备教案,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?下面是小编为大家收集的人教版六年级下册数学教案6篇,欢迎阅读,希望大家能够喜欢。

人教版六年级下册数学教案集合6篇

人教版六年级下册数学教案 篇1

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.呈现例4中长方体、正方体和圆柱的直观图。

  2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1.观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2.实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的`圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3.推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1.做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2.做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

人教版六年级下册数学教案 篇2

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的`平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

人教版六年级下册数学教案 篇3

  教学内容:

  人教版小学数学教材六年级上册第96~97页例1及相关练习。

  教学目标:

  1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

  2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

  教学重点:

  看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

  教学难点:

  根据统计图进行简单的数据分析。

  教学准备:

  课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

  教学过程:

  一、创设情境,谈话激趣

  1.出示教材第96页情境图,说说同学们正在干什么?

  2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

  喜欢的项目

  乒乓球足球跳绳踢毽其他人数

  【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

  二、整理数据,引入新课

  1.通过这张统计表,我们可以得到什么信息?

  预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

  2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

  3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

  4.学生进行口算或笔算,完成统计表,并进行校对。

  喜欢的项目

  乒乓、球足球、跳绳、踢毽、其他

  人数

  12 8 5 6 9

  百分比

  30% 20% 12.5% 15% 22.5%

  【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。

  三、合作交流,探究新知

  1.认识扇形统计图

  (1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么?

  (2)乒乓球的30%又表示什么?

  预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。

  (3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)

  (4)根据学生回答完成扇形统计图。

  (5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)

  (6)想想各个扇形的大小与什么有关系?

  (7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。

  2.理解扇形统计图的特征

  (1)看图说说,在这幅统计图中你还可以知道哪些信息?

  预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的`人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。

  (2)说说这样的统计图有什么优势?

  预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。

  (3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。

  【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。

  3.尝试练习

  出示教材第97页“做一做”的内容。

  (1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)

  (2)说说从图上你得到了哪些信息?

  (3)如果每天喝一袋250 g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250 g的关系,进而算出各种营养成分多少克。

人教版六年级下册数学教案 篇4

  教学目标

  1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

  2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

  3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

  教学重点、难点

  1、圆柱体积计算公式的推导过程并能正确应用。

  2、借助教具演示,弄清圆柱与长方体的关系。

  教具、学具准备

  多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

  教学设想

  《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

  教学过程

  一、创设情境,激疑引入

  “水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

  1、出示装了水的圆柱容器。

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

  (2)讨论后汇报:

  生1:用量筒或量杯直接量出它的体积;

  生2:用秤称出水的重量,然后进一步知道体积;

  生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

  师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

  生1:把水到入长方体容器中……

  生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

  [设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

  2、创设问题情境。

  师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

  [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

  师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验,探究新知

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

  生1:圆柱的上下两个底面是圆形

  生2:侧面展开是长方形……

  生3:说明圆柱和我们学过的圆和长方形有联系

  师:请同学们想想圆柱的体积与什么有关?

  生1:可能与它的大小有关

  生2:不是吧,应该与它的高有关

  [设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  配合学生回答演示课件。

  [设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

  2、小组合作,探究新知

  (1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

  (2)学生以小组为单位操作体验。

  把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的` 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

  [设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

  (3)学生小组汇报交流:

  近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

  教师根据学生汇报报,用教具进行演示。

  (4)概括板书:根据圆柱与近似长方体的关系,推导公式:

  长方体的体积 = 底面积 × 高

  ↓ ↓ ↓

  圆柱的体积 = 底面积 × 高

  用字母表示计算公式V= sh

  设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

人教版六年级下册数学教案 篇5

  教学内容:

  例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

  例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

  例7是一个比较复杂的`逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

  教学目标:

  1.通过学生观察、探索,使学生掌握数线段的方法。

  2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。

  3.培养学生归纳推理探索规律的能力。

  重点难点:

  引导学生发现规律,找到数线段的方法

  教具学具:

  多媒体课件

  教学指导:

  1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

  2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

  3.探究例7时,必须先让学生仔细读题,理解题意。

  教学过程:

  一、复习回顾,游戏设疑,激趣导入。

  1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

  2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

  新知学习

  二、逐层探究,发现规律。

  1.从简到繁,动态演示,经历连线过程。

人教版六年级下册数学教案 篇6

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的.顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案11-13

人教版六年级下册数学教案06-17

六年级下册人教版数学教案6篇11-13

六年级下册人教版数学教案(6篇)11-13

人教版六年级下册《比例的应用》数学教案12-10

人教版小学六年级下册数学教案12-31

人教版六年级下册数学教案10篇11-28

人教版六年级下册数学教案6篇11-17

人教版六年级下册数学教案7篇11-20

人教版六年级下册数学教案(7篇)11-20