人教版六年级下册数学教案

时间:2024-11-08 10:26:00 教案 我要投稿

人教版六年级下册数学教案范文汇总十篇

  作为一位兢兢业业的人民教师,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。如何把教案做到重点突出呢?下面是小编精心整理的人教版六年级下册数学教案10篇,希望对大家有所帮助。

人教版六年级下册数学教案范文汇总十篇

人教版六年级下册数学教案 篇1

  (1)两个质数的和是39,这两个质数的积是( )。

  分析 本题考查的是质数的意义及数的奇偶性等知识。

  两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

  解答 74

  (2)120的因数有( )个。

  分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的.个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

  解答 16

  ⊙探究活动

  1.课件出示题目。

  (1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

  (2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?

  2.明确探究要求。(小组合作、思考、交流)

  (1)这两道题分别考查什么知识?

  (2)怎样解决这两个问题?

  (3)具体的解答过程是怎样的?

  3.汇报。

  (1)先汇报前两个问题。

  预设

  生1:第(1)题考查的是应用因数的知识解决问题的能力。

  生2:第(2)题考查的是应用倍数的知识解决问题的能力。

  生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。

  生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。

  (2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)

  (3)汇报解答过程。(指名板演,集体订正)

  预设

  生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。

  生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。

  4.小结。

  解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。

  ⊙课堂总结

  通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。

  ⊙布置作业

  教材75页5、9题。

  板书设计

  因数、倍数、质数、合数

  因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。

人教版六年级下册数学教案 篇2

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的.海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案 篇3

  教学目标

  1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

  2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

  3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

  教学重点、难点

  1、圆柱体积计算公式的推导过程并能正确应用。

  2、借助教具演示,弄清圆柱与长方体的关系。

  教具、学具准备

  多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

  教学设想

  《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

  教学过程

  一、创设情境,激疑引入

  “水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

  1、出示装了水的圆柱容器。

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

  (2)讨论后汇报:

  生1:用量筒或量杯直接量出它的体积;

  生2:用秤称出水的重量,然后进一步知道体积;

  生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

  师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

  生1:把水到入长方体容器中……

  生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

  [设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

  2、创设问题情境。

  师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

  [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

  师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验,探究新知

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

  生1:圆柱的上下两个底面是圆形

  生2:侧面展开是长方形……

  生3:说明圆柱和我们学过的圆和长方形有联系

  师:请同学们想想圆柱的体积与什么有关?

  生1:可能与它的大小有关

  生2:不是吧,应该与它的高有关

  [设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的`。

  配合学生回答演示课件。

  [设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

  2、小组合作,探究新知

  (1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

  (2)学生以小组为单位操作体验。

  把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

  [设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

  (3)学生小组汇报交流:

  近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

  教师根据学生汇报报,用教具进行演示。

  (4)概括板书:根据圆柱与近似长方体的关系,推导公式:

  长方体的体积 = 底面积 × 高

  ↓ ↓ ↓

  圆柱的体积 = 底面积 × 高

  用字母表示计算公式V= sh

  设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

人教版六年级下册数学教案 篇4

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的'棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

人教版六年级下册数学教案 篇5

  教材及学情简析:

  本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

  此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

  教学目标:

  1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

  2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

  3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

  教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

  教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

  教学准备:课件、圆柱体、长方体、正方体、剪刀等。

  教学过程:

  一、温故对比引圆柱

  1.出示圆。

  还记得圆是什么图形吗?(平面图形)

  2.出示柱。

  老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

  (由圆到圆柱,推想发现圆柱是立体图形。)

  3.想圆柱。

  相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

  (唤起学生对圆柱的已有经验。)

  4.摸圆柱。

  老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

  5.谈圆柱。

  在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

  6.引新课。

  看来这圆柱还真是与众不同,今天我们就来好好地认识它。

  【设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

  二、独立自主学圆柱

  1.认识圆柱的几何图形。

  (出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

  2.自学课本,认识圆柱各部分的名称。

  同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

  3.分享自学成果。

  4.加深理解,学生互相指一指圆柱的底面、侧面和高。

  我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

  【设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

  三、猜想验证探圆柱

  1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

  如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

  除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

  怎样剪才能得到长方形?

  (通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

  2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

  为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

  3.汇报并总结圆柱的侧面展开图的特征。

  小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

  4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

  ⑴ 根据圆柱的侧面选择合适的底面。

  ⑵ 根据圆柱的底面选择合适的侧面。

  【设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的`特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

  四、梳理新知用圆柱

  1.梳理新知。

  ⑴ 师导。

  同学们看,我们今天学到了关于圆柱的什么知识?

  ⑵ 生谈。

  请同学们当推销员介绍一下你所认识的圆柱

  2.运用新知。

  ⑴ 基本练习(以书面的形式出现)。

  ① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

  ② 圆柱有一个曲面叫做( )面。

  ③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

  ④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

  ⑵ 判断说明。

  判断下面的图形是不是圆柱,为什么?

  3.回归生活,发现圆柱。

  在生活中,你看见过哪些物体是圆柱形的?

  【设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

  五、欣赏了解悟圆柱

  1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

  圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

  2.介绍圆柱的高在生活中的其他叫法。

  (高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

  同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

  4.放大圆柱的内涵介绍可乐罐的奥秘。

  有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

  【设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

  六、学以致用做圆柱

  课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

  【设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

  板书设计:

  认识 圆柱

  2个底面:是完全相同的两个圆

  无数条高:两个底面之间的距离

  【设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

人教版六年级下册数学教案 篇6

  教学内容:

  教科书P23-26的内容,P24做一做,完成练习四的第1、2题。

  教学目标:

  1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

  2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

  3、养学生的自主探索意识,激发学生强烈的求知欲望。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  正确理解圆锥的组成。

  教具准备:

  每人一个圆锥,师准备一个大的圆锥模型。

  教学过程:

  一、复习

  1、圆柱体积的计算公式是什么?

  2、圆柱的特征是什么?

  二、新课

  1、圆锥的认识 (直观感受观察讨论汇报)

  (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

  (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

  (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

  (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

  2、小结

  圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的.特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

  3、测量圆锥的高(组织学生分组进行测量)

  由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

  (1)先把圆锥的底面放平;

  (2)用一块平板水平地放在圆锥的顶点上面;

  (3)竖直地量出平板和底面之间的距离。

  4、教学圆锥侧面的展开图

  (1)学生猜想圆锥的侧面展开后会是什么图形呢?

  (2)实验来得出圆锥的侧面展开后是一个扇形。

  三、课堂练习

  1、做第24页做一做的题目。

  让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

  2、练习四的第1题。

  (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

  (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

  3.完成练习四的第2题。

  补充习题

  1出示一组图形,辨认指出哪些是圆锥。

  2出示一组图形,指出哪个是圆锥的高。

  3出示一组组合图形,指出是由哪些图形组成的。

  四、总结

  关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

  教学反思:

  观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。

人教版六年级下册数学教案 篇7

  【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

  【教学目标】

  1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

  2、能按一定的比,将一些简单图形进行放大或缩小。

  【教学重点】图形的放大与缩小。

  【教学难点】按一定的比把图形放大或缩小。

  【教学准备】多媒体

  【自学内容】见预习作业

  【教学预设】

  一、自学反馈

  1、什么叫做比例尺?

  一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2、怎样求比例尺?

  求图上距离和实际距离的最简整数比。

  3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

  (1)学生尝试独立求比例尺。

  (2)汇报交流

  50c:40=50c:4000c=1:80

  (3)你是怎么想的.?

  二、关键点拨

  1、求比例尺。

  (1)怎样求一幅图的比例尺?

  先写出图上距离与实际距离的比,再化成最简整数比。

  (2)比例尺有什么特点?

  比例尺是前项或后项为1的比。

  (3)比例尺可以怎样表示?

  数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

  2、求实际距离。

  (1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

  (2)学生尝试独立列比例解答。

  (3)汇报交流

  解:设这两地之间的实际距离大约是x厘米。

  =

  =5000000

  5000000c=50

  (4)你觉得在求实际距离时要注意什么问题?

  实际距离一般用千米做单位。

  3、求图上距离

  (1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

  (2)学生尝试画操场的平面图。

  (3)汇报交流

  你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

  三、巩固练习

  1、课本第53页练习八第1题求比例尺。

  2、课本第52页做一做第1题。

  3、课本第52页做一做第2题。

  四、分享收获 畅谈感想

  这节课,你有什么收获?听课随想

人教版六年级下册数学教案 篇8

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的'内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版六年级下册数学教案 篇9

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的`实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇10

  教学目标:

  1、学生通过小组合作学习对单元知识进行概括,建立知识结构;

  2、会解决实际问题;

  3、归纳整理的能力及解决问题的能力;

  4、积极探索、团结协作的精神,获得收获的成功感。

  教学重点:运用所学知识解决实际问题。、

  教学难点:归纳整理,形成知识脉络。

  教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。

  教学过程:

  一、引发矛盾,引入课题

  猜一猜:老师今年多少岁了?

  [投影]老师年龄数的十位上是最小的奇数型质数,个位上的数既不是质数也不是合数。你们说老师今年多少岁了?

  猜这个谜语,我们需要哪些数学知识呢?

  说得有理,我们学过有关数的知识很多,就像刚才我们在猜谜时就用到了数的整除中的一些知识。今天我们就一起来整理复习数的整除,板书:数的整除复习

  齐读课题,你想到什么?

  那好吧,我们就开始复习。

  二、梳理知识,形成脉络

  1、 集中呈现

  现在请大家以小组为学习单位,按照你们的想法,把学过的数

  的整除这部分知识整理在下发的纸上。(请大家认真讨论商量,并由组长记录)待会儿我们要比一比,看哪个小组整理的既完整,又科学合理。巡视

  2、 逐个梳理

  1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。

  2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)

  3)整理完善知识结构

  在数的整除这部分首先学习的.是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)

  组织学生汇报交流、讨论。

  提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)

  说得真好!这些知识之间是有密切联系的。

  对于今天整理出来的数的整除脉络图,大家有什么想法?

  通过整理,可以使这部分知识更加条理化、系统化。

  3、 自学课本,看一看还有什么不清楚的问题?

  三、应用、解决问题

  1、填空题

  在1----20的自然数中,有( )个奇数,有( )个偶数,有( )个质数,有( )个合数,奇数中的( )是合数,偶数中的( )是质数,既不是质数也不是合数的数是( )。

  2、能同时被2、5、3整除的最小两位数是( ),最大三位数是( )。

  3、选择题

  (1)一个合数的约数有( )

  A) 1个 B) 2个 C) 3个 D) 4个

  (2)如果a 和 b 是互质数,那么它们的最小公倍数是( )

  A) a B) b C) a b D) 1

  4、判断题

  (1)整除一定是除尽,除尽不一定整除。 ( )

  (2)相邻的两个自然数一定互质。 ( )

  (3)所有偶数都是合数。 ( )

  (4)24分解质因数 24 = 22231 。 ( )

  (5)一个自然数的最大约数一定等于它的最小公倍数。 ( )

  5、把下面的数按照不同的标准分成两类,你能想到几种?

  2 15 8 17 20

  四、强化总结,拓展迁移

  今天我们共同上了一节数的整除的整理与复习课,通过这节课的学习,我觉得大家特别聪明、好学,老师很高兴与大家共同渡过了这美好的40分钟,而且我们已经是 多次合作,所以我想与大家做好朋友,你们愿意吗?

  老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?

  老师的手机号码是11位数字,每一位数字依次是:

  1)是质数也不是合数;

  2)最小奇数与最小质数的和;

  3)最小的自然数;

  4)质数中最小的两个数的和;

  5)既是质数,又是偶数;

  6)最小质数与最小合数的积;

  7)有约数2 和3 的一位数;

  8)自然数中最小的奇数;

  9)最大约数与最小倍数都是 7 的数;

  10)所有自然数的约数;

  11)最大的一位数 。

  同学们以后有事需要老师帮忙,随时call我。

  这节课上到这里可以吗?

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案10-13

人教版六年级下册数学教案06-18

人教版六年级下册数学教案04-15

六年级下册人教版数学教案6篇07-31

六年级下册人教版数学教案(6篇)09-06

人教版六年级下册数学教案模板04-08

人教版小学六年级下册数学教案07-29

人教版六年级下册数学教案7篇07-31

人教版六年级下册数学教案10篇09-04

人教版六年级下册数学教案5篇06-14