人教版六年级下册数学教案

时间:2024-05-25 02:20:44 教案 我要投稿

精选人教版六年级下册数学教案3篇

  作为一位杰出的教职工,就有可能用到教案,借助教案可以更好地组织教学活动。那么什么样的教案才是好的呢?下面是小编为大家整理的人教版六年级下册数学教案3篇,希望能够帮助到大家。

精选人教版六年级下册数学教案3篇

人教版六年级下册数学教案 篇1

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的.高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇2

  教学目标:

  1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

  2、进一步理解等底等高的圆柱和圆锥之间的关系。

  3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

  教学重难点:综合应用所学知识解决实际问题。

  教学过程:

  一、复习回顾

  1、等底等高的圆柱与圆锥体积之间有怎样的关系?

  2、圆锥的体积怎样计算?

  二、基本练习

  1、填空

  (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

  (4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

  (5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的`高是()厘米。

  2、判断。

  (1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

  (2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

  (3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

  三、综合应用

  1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

  2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

  第八课时教学反思

  教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

  教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

  教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

  [再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案 篇3

  教材及学情简析:

  本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

  此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

  教学目标:

  1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

  2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

  3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

  教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

  教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

  教学准备:课件、圆柱体、长方体、正方体、剪刀等。

  教学过程:

  一、温故对比引圆柱

  1.出示圆。

  还记得圆是什么图形吗?(平面图形)

  2.出示柱。

  老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

  (由圆到圆柱,推想发现圆柱是立体图形。)

  3.想圆柱。

  相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

  (唤起学生对圆柱的已有经验。)

  4.摸圆柱。

  老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

  5.谈圆柱。

  在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

  6.引新课。

  看来这圆柱还真是与众不同,今天我们就来好好地认识它。

  【设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

  二、独立自主学圆柱

  1.认识圆柱的几何图形。

  (出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

  2.自学课本,认识圆柱各部分的名称。

  同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

  3.分享自学成果。

  4.加深理解,学生互相指一指圆柱的底面、侧面和高。

  我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

  【设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

  三、猜想验证探圆柱

  1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

  如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

  除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

  怎样剪才能得到长方形?

  (通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

  2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

  为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

  3.汇报并总结圆柱的侧面展开图的特征。

  小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

  4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

  ⑴ 根据圆柱的侧面选择合适的底面。

  ⑵ 根据圆柱的底面选择合适的侧面。

  【设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

  四、梳理新知用圆柱

  1.梳理新知。

  ⑴ 师导。

  同学们看,我们今天学到了关于圆柱的什么知识?

  ⑵ 生谈。

  请同学们当推销员介绍一下你所认识的圆柱

  2.运用新知。

  ⑴ 基本练习(以书面的形式出现)。

  ① 圆柱的'上下两个面叫做( )面,它们是( )的两个圆。

  ② 圆柱有一个曲面叫做( )面。

  ③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

  ④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

  ⑵ 判断说明。

  判断下面的图形是不是圆柱,为什么?

  3.回归生活,发现圆柱。

  在生活中,你看见过哪些物体是圆柱形的?

  【设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

  五、欣赏了解悟圆柱

  1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

  圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

  2.介绍圆柱的高在生活中的其他叫法。

  (高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

  同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

  4.放大圆柱的内涵介绍可乐罐的奥秘。

  有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

  【设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

  六、学以致用做圆柱

  课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

  【设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

  板书设计:

  认识 圆柱

  2个底面:是完全相同的两个圆

  无数条高:两个底面之间的距离

  【设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案10-13

人教版六年级下册数学教案06-18

人教版六年级下册数学教案04-15

六年级下册人教版数学教案6篇07-31

六年级下册人教版数学教案(6篇)09-06

人教版六年级下册数学教案模板04-08

人教版小学六年级下册数学教案07-29

人教版六年级下册数学教案7篇07-31

人教版六年级下册数学教案10篇09-04

人教版六年级下册数学教案5篇06-14