人教版六年级下册数学教案模板合集9篇
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案要怎么写呢?下面是小编收集整理的人教版六年级下册数学教案9篇,仅供参考,希望能够帮助到大家。
人教版六年级下册数学教案 篇1
教学内容:
成数(课本第9页例2)
教学目标:
1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。
2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解成数的意义。
教学难点:
解决解答有关成数的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=( )%; 四成五=( )%; 七成二=( )%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的`解法列出算式和解答。
350(1-25%)=262.5(万千瓦时)
或者引导学生列出
350-35025%=262.5(万千瓦时)
四、巩固练习
1、三成=( )%; 五成六=( )%; 八成三=( )%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?
(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
人教版六年级下册数学教案 篇2
教学内容:
例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。
例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。
例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的.常用方法排除法。
教学目标:
1.通过学生观察、探索,使学生掌握数线段的方法。
2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的能力。
重点难点:
引导学生发现规律,找到数线段的方法
教具学具:
多媒体课件
教学指导:
1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法
2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答
3.探究例7时,必须先让学生仔细读题,理解题意。
教学过程:
一、复习回顾,游戏设疑,激趣导入。
1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)
2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)
新知学习
二、逐层探究,发现规律。
1.从简到繁,动态演示,经历连线过程。
人教版六年级下册数学教案 篇3
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的`方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、 自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)
圆柱的侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积 = 圆柱的侧面积+底面积×2
=Ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。
人教版六年级下册数学教案 篇4
教学内容:
人教版小学数学教材六年级上册第96~97页例1及相关练习。
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)
喜欢的项目
乒乓球足球跳绳踢毽其他人数
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目
乒乓、球足球、跳绳、踢毽、其他
人数
12 8 5 6 9
百分比
30% 20% 12.5% 15% 22.5%
【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的'人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知
1.认识扇形统计图
(1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么?
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250 g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250 g的关系,进而算出各种营养成分多少克。
人教版六年级下册数学教案 篇5
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的'语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
人教版六年级下册数学教案 篇6
(1)两个质数的和是39,这两个质数的积是( )。
分析 本题考查的是质数的意义及数的奇偶性等知识。
两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。
解答 74
(2)120的因数有( )个。
分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。
解答 16
⊙探究活动
1.课件出示题目。
(1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?
(2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?
2.明确探究要求。(小组合作、思考、交流)
(1)这两道题分别考查什么知识?
(2)怎样解决这两个问题?
(3)具体的解答过程是怎样的?
3.汇报。
(1)先汇报前两个问题。
预设
生1:第(1)题考查的`是应用因数的知识解决问题的能力。
生2:第(2)题考查的是应用倍数的知识解决问题的能力。
生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。
生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。
(2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)
(3)汇报解答过程。(指名板演,集体订正)
预设
生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。
生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。
4.小结。
解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。
⊙课堂总结
通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。
⊙布置作业
教材75页5、9题。
板书设计
因数、倍数、质数、合数
因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。
人教版六年级下册数学教案 篇7
教学目标:
1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。
2、进一步理解等底等高的圆柱和圆锥之间的关系。
3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。
教学重难点:综合应用所学知识解决实际问题。
教学过程:
一、复习回顾
1、等底等高的圆柱与圆锥体积之间有怎样的关系?
2、圆锥的体积怎样计算?
二、基本练习
1、填空
(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。
(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。
(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
2、判断。
(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()
(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()
(3)圆锥的`底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()
三、综合应用
1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?
2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?
第八课时教学反思
教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。
教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。
教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。
[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。
人教版六年级下册数学教案 篇8
一、游戏导入
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的.意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
人教版六年级下册数学教案 篇9
一、创设情境,提出问题
师:同学们,你们知道一个人去找工作时,他一般最关注什么?
生:工资。
生:工作环境和待遇。
师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:
某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I
月工资30002000900800700700600600600600500
问题1请大家仔细观察表中的数据,讨论回答下面的问题:
(1)副经理说月平均工资1000元是否欺骗了李叔叔?
(2)你有什么想法?
生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。
师:对,我们学过平均数的知识,平均数是1000元是没有错。
那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。
生:因为两位经理的工资很高,带动了员工的平均公资。
师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。
【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】
学生小组讨论:
生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。
生2:我认为700元比较合理,因为它是这组数据的中位数。
师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?
生:600元
师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。
二、探究新知。
板书:众数。
【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】
师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。
师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。
五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)
1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49
1.51,1.51,1.51,1.51,1.52,1.54,1.54
你认为参赛队员的身高是多少比较合适?
学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。
【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。
三、分析数据,尝试统计决策。
师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)
甲:9.5109.49.59.79.59.49.39.49.3
乙:109108.39.89.5109.88.79.9
看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?
生1:我认为会选甲,甲的成绩很高。
生2:我想会选乙,乙打中10环的多。
生3:我想应该看看他们的平均分。
师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)
生:老师,平均数一样,都是9.5。
师;平均数一样我们该怎么办呢?
生1:看众数。甲的众数是9.5。
生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?
师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。
生:乙的`众数是10,所以乙获胜的机会大一些。
师:在平均数相同时,我们应该看众数。
【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】
四、学生畅谈收获。
五:教师小结。
同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。
案例反思:
1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性
2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。
【人教版六年级下册数学教案】相关文章:
六年级下册人教版数学教案10-13
人教版六年级下册数学教案06-18
人教版六年级下册数学教案04-15
六年级下册人教版数学教案6篇07-31
六年级下册人教版数学教案(6篇)09-06
人教版六年级下册数学教案模板04-08
人教版小学六年级下册数学教案07-29
人教版六年级下册数学教案7篇07-31
人教版六年级下册数学教案10篇09-04
人教版六年级下册数学教案5篇06-14