人教版六年级下册数学教案

时间:2021-12-31 10:29:33 教案 我要投稿

关于人教版六年级下册数学教案锦集9篇

  作为一无名无私奉献的教育工作者,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?以下是小编帮大家整理的人教版六年级下册数学教案9篇,欢迎大家分享。

关于人教版六年级下册数学教案锦集9篇

人教版六年级下册数学教案 篇1

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的'时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案 篇2

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的'最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

人教版六年级下册数学教案 篇3

  一、创设情境,提出问题

  师:同学们,你们知道一个人去找工作时,他一般最关注什么?

  生:工资。

  生:工作环境和待遇。

  师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:

  某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I

  月工资30002000900800700700600600600600500

  问题1请大家仔细观察表中的数据,讨论回答下面的问题:

  (1)副经理说月平均工资1000元是否欺骗了李叔叔?

  (2)你有什么想法?

  生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。

  师:对,我们学过平均数的知识,平均数是1000元是没有错。

  那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。

  生:因为两位经理的工资很高,带动了员工的平均公资。

  师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。

  【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】

  学生小组讨论:

  生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。

  生2:我认为700元比较合理,因为它是这组数据的中位数。

  师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?

  生:600元

  师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。

  二、探究新知。

  板书:众数。

  【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】

  师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。

  师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。

  五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)

  1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

  1.51,1.51,1.51,1.51,1.52,1.54,1.54

  你认为参赛队员的身高是多少比较合适?

  学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。

  【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。

  三、分析数据,尝试统计决策。

  师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)

  甲:9.5109.49.59.79.59.49.39.49.3

  乙:109108.39.89.5109.88.79.9

  看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?

  生1:我认为会选甲,甲的成绩很高。

  生2:我想会选乙,乙打中10环的.多。

  生3:我想应该看看他们的平均分。

  师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)

  生:老师,平均数一样,都是9.5。

  师;平均数一样我们该怎么办呢?

  生1:看众数。甲的众数是9.5。

  生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?

  师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。

  生:乙的众数是10,所以乙获胜的机会大一些。

  师:在平均数相同时,我们应该看众数。

  【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】

  四、学生畅谈收获。

  五:教师小结。

  同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

  案例反思:

  1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性

  2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。

人教版六年级下册数学教案 篇4

  教材及学情简析:

  本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

  此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

  教学目标:

  1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

  2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

  3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

  教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

  教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

  教学准备:课件、圆柱体、长方体、正方体、剪刀等。

  教学过程:

  一、温故对比引圆柱

  1.出示圆。

  还记得圆是什么图形吗?(平面图形)

  2.出示柱。

  老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

  (由圆到圆柱,推想发现圆柱是立体图形。)

  3.想圆柱。

  相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

  (唤起学生对圆柱的已有经验。)

  4.摸圆柱。

  老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

  5.谈圆柱。

  在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

  6.引新课。

  看来这圆柱还真是与众不同,今天我们就来好好地认识它。

  【设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

  二、独立自主学圆柱

  1.认识圆柱的几何图形。

  (出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

  2.自学课本,认识圆柱各部分的名称。

  同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

  3.分享自学成果。

  4.加深理解,学生互相指一指圆柱的底面、侧面和高。

  我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

  【设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

  三、猜想验证探圆柱

  1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

  如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

  除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

  怎样剪才能得到长方形?

  (通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

  2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

  为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

  3.汇报并总结圆柱的侧面展开图的特征。

  小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的'高。(配合课件演示)

  4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

  ⑴ 根据圆柱的侧面选择合适的底面。

  ⑵ 根据圆柱的底面选择合适的侧面。

  【设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

  四、梳理新知用圆柱

  1.梳理新知。

  ⑴ 师导。

  同学们看,我们今天学到了关于圆柱的什么知识?

  ⑵ 生谈。

  请同学们当推销员介绍一下你所认识的圆柱

  2.运用新知。

  ⑴ 基本练习(以书面的形式出现)。

  ① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

  ② 圆柱有一个曲面叫做( )面。

  ③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

  ④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

  ⑵ 判断说明。

  判断下面的图形是不是圆柱,为什么?

  3.回归生活,发现圆柱。

  在生活中,你看见过哪些物体是圆柱形的?

  【设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

  五、欣赏了解悟圆柱

  1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

  圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

  2.介绍圆柱的高在生活中的其他叫法。

  (高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

  同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

  4.放大圆柱的内涵介绍可乐罐的奥秘。

  有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

  【设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

  六、学以致用做圆柱

  课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

  【设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

  板书设计:

  认识 圆柱

  2个底面:是完全相同的两个圆

  无数条高:两个底面之间的距离

  【设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

人教版六年级下册数学教案 篇5

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的.学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇6

  教学内容:

  人教版小学数学教材六年级下册第96~97页例1及相关练习。

  教学目标:

  1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

  2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

  教学重点:

  看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

  教学难点:

  根据统计图进行简单的数据分析。

  教学准备:

  课前统计本班学生喜欢的体育项目,课前统计学生自己一天的`作息时间安排,课件。

  教学过程:

  一、创设情境,谈话激趣

  1.出示教材第96页情境图,说说同学们正在干什么?

  2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

  喜欢的项目

  乒乓球

  足球

  跳绳

  踢毽

  其他

  人数

  【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

  二、整理数据,引入新课

  1.通过这张统计表,我们可以得到什么信息?

  预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

  2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

  3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

  4.学生进行口算或笔算,完成统计表,并进行校对。

人教版六年级下册数学教案 篇7

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的`侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

人教版六年级下册数学教案 篇8

  教学目标:

  1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

  2、进一步理解等底等高的圆柱和圆锥之间的关系。

  3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

  教学重难点:综合应用所学知识解决实际问题。

  教学过程:

  一、复习回顾

  1、等底等高的圆柱与圆锥体积之间有怎样的关系?

  2、圆锥的体积怎样计算?

  二、基本练习

  1、填空

  (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的.体积是()立方分米。

  (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

  (4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

  (5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

  2、判断。

  (1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

  (2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

  (3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

  三、综合应用

  1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

  2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

  第八课时教学反思

  教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

  教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

  教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

  [再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案 篇9

  教学内容:

  人教版小学数学教材六年级下册第107~108页例2及相关练习。

  教学目标:

  1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

  2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

  重点难点:

  探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

  教学准备:

  教学课件。

  教学过程:

  一、直接导入,揭示课题

  同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

  【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

  二、探索发现,学习新知

  (一)教师与学生比赛算题

  1.教师:你知道等于多少吗?(学生:)

  教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

  2.只要按照这个分子是1,分母依次扩大2倍的.规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

  在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

  3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

  【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

  (二)借助正方形探究计算方法

  1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

  2.进行演示讲解。

  (1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案11-13

人教版六年级下册数学教案06-17

人教版六年级下册《比例的应用》数学教案12-10

人教版小学六年级下册数学教案12-31

六年级下册人教版数学教案6篇11-13

六年级下册人教版数学教案(6篇)11-13

人教版六年级下册数学教案5篇06-17

人教版六年级下册数学教案集锦06-08

【精选】人教版六年级下册数学教案四篇04-25

人教版六年级下册数学教案10篇11-28