人教版六年级下册数学教案

时间:2024-09-16 07:58:44 教案 我要投稿

关于人教版六年级下册数学教案汇总六篇

  作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?以下是小编帮大家整理的人教版六年级下册数学教案6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于人教版六年级下册数学教案汇总六篇

人教版六年级下册数学教案 篇1

  教学目标:

  1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

  2、进一步理解等底等高的圆柱和圆锥之间的关系。

  3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

  教学重难点:综合应用所学知识解决实际问题。

  教学过程:

  一、复习回顾

  1、等底等高的圆柱与圆锥体积之间有怎样的关系?

  2、圆锥的体积怎样计算?

  二、基本练习

  1、填空

  (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

  (4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的'高是()厘米。

  (5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

  2、判断。

  (1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

  (2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

  (3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

  三、综合应用

  1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

  2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

  第八课时教学反思

  教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

  教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

  教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

  [再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案 篇2

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4

  0.5 :0.2和5:2

  1/2:1/3 和6 : 4

  0.2:0.8和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的'名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6 = 60:40

  内项:1.6 6o

  外项:2.4 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如:2.4 :1.6 = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的积是2.440=96

  两个内项的积是1.660=96

  外项的积等于内项的积。

  (4) 举例说明,检验发现。

  0.6 :0.5=1.2: 1

  两个外项的积是 0.61 =0.6

  两个内项的积是0.51.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:2.4/1.6 = 60/40

  3.440=1.660

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

  (2)0.8:1.2=4:6

  ( )( )=( )( )

  (3)45=210

  4:( )=( ):( )

  5.做一做。

  完成课本中的做一做。

  6.课堂小结

  (1) 说一说比例的基本性质。

  (2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

  三、巩固练习

  完成课文练习六第4~6题。

  补充习题

  一题多变化,动脑解决它

  (1)在比例里,两个内项的积是18,

  其中一个外项是2,另一个外项是()。

  (2)如果5a=3b,那么, = ,

  (3)a︰8=9︰b,那么,ab=( )

  教学反思:

  比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版六年级下册数学教案 篇3

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的'数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版六年级下册数学教案 篇4

  教学内容:

  成数(课本第9页例2)

  教学目标:

  1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

  2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

  教学重点:

  理解成数的意义。

  教学难点:

  解决解答有关成数的实际问题。

  教学过程:

  一、复习

  1、填空

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设情境,导入新课

  同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

  三、探究体验

  (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

  1、让学生尝试把二成及三成五改写成百分数。

  2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

  3、练习:将下列成数改写成百分数。

  二成=( )%; 四成五=( )%; 七成二=( )%。

  (二)教学例2

  1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

  2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

  3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

  4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的'百分之几是多少的解法列出算式和解答。

  350(1-25%)=262.5(万千瓦时)

  或者引导学生列出

  350-35025%=262.5(万千瓦时)

  四、巩固练习

  1、三成=( )%; 五成六=( )%; 八成三=( )%;

  2、第9页做一做

  3、解决问题

  (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

  (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

  (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

  (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

  五、课堂总结

  这节课你收获了什么?

人教版六年级下册数学教案 篇5

  教学内容:

  例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的`策略之一。

  例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

  例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

  教学目标:

  1.通过学生观察、探索,使学生掌握数线段的方法。

  2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。

  3.培养学生归纳推理探索规律的能力。

  重点难点:

  引导学生发现规律,找到数线段的方法

  教具学具:

  多媒体课件

  教学指导:

  1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

  2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

  3.探究例7时,必须先让学生仔细读题,理解题意。

  教学过程:

  一、复习回顾,游戏设疑,激趣导入。

  1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

  2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

  新知学习

  二、逐层探究,发现规律。

  1.从简到繁,动态演示,经历连线过程。

人教版六年级下册数学教案 篇6

  教学目标:

  1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:初步认识正数和负数以及读法和写法。

  教学难点:理解0既不是正数,也不是负数。

  教学具准备:多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的.时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案10-13

人教版六年级下册数学教案06-18

人教版六年级下册数学教案04-15

六年级下册人教版数学教案6篇07-31

六年级下册人教版数学教案(6篇)09-06

人教版小学六年级下册数学教案07-29

人教版六年级下册数学教案模板04-08

人教版六年级下册数学教案(7篇)08-18

人教版六年级下册数学教案10篇09-04

人教版六年级下册数学教案5篇06-14