《组合图形的面积》教案(精选20篇)
作为一名教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写呢?下面是小编精心整理的《组合图形的面积》教案,仅供参考,欢迎大家阅读。
《组合图形的面积》教案 1
设计理念:
本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:
知识目标:
1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:
1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:
1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的'喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:
选择有效的计算方法解决实际问题。
教学过程:
一、复习旧知,引入新课
1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)
[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]
二、探索组合图形面积计算方法
1、割
那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习的平面图形的兴趣。]
2、补、大面积-小面积
出示一个组合图形
(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)
师:谁来说说你是用哪种方法计算的。
生介绍,师根据学生的介绍演示不同的方法。
师:这几种方法你们最喜欢哪一种呢?
师:为什么?(引导学生选择分得最少的,计算又简洁的方法)
(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)
3、小结求组合图形面积常用的方法
割、补、大面积-小面积。
4、小试牛刀
课后第一题。
请说说你用了什么方法。你更喜欢哪种方法?
5、挑战
(1)独立思考
(2)讨论
(3)移、拼的方法
[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]
3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?
[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]
4、练习:课后2、3
板书:
长方形面积=长×宽割
正方形面积=边长×边长补
平行四边形面积=底×高拼
三角形面积=底×高÷2写大面积-小面积
梯形面积=(上底+下底)×高÷2
《组合图形的面积》教案 2
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程
一、情境导入
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的.定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)
二、互动新授
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。集体汇报。
三、巩固拓展
1.完成教材第101页“练习二十二”第1题。
2.完成教材第101页“练习二十二”第2题。
3.完成教材第101页“练习二十二”第3题。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
板书设计:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2
=25+5=12×2.5÷2×2
=30(2)=30(2)
《组合图形的面积》教案 3
教学内容:
小学数学第十二册第126页
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:
进一步培养学生学会观察。
教学难点:
进一步学会找隐蔽条件。
教学过程:
一、复习基本知识
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车
4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)
二、变化练习
1、小组讨论:从刚才的`简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)
2、学生汇报:(边出示,边板书)
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)
(2)正方形面积-角形面积列式:4×4-4×4÷2
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2
(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2
3、并回答以下问题:
(1)由几个简单图形组成的图形叫做()。
(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
《组合图形的面积》教案 4
【教材简析】
本课是五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【学情分析】
《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。本课让学生在自主观察思考的前提下,通过小组合作学习、汇报交流来进一步拓宽学生的思维空间,通过与他人的交流与合作,获取更多的方法,提升学生的学习能力。
【教学目标】
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的.能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
【教学重点】
探索并掌握组合图形的面积计算方法。
【教学难点】
理解并掌握组合图形的组合及分解方法。
【学具准备】
前置性作业
【教学设想】
在本课的学习中,我让学生小组合作学习、汇报交流创设一个广阔的学习空间,探索空间。通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。让学生在自主探索、合作交流的学习氛围中最大限度的参与到探索求组合图形的面积全过程,具体设计如下:
【教学过程】
一、创设情境,激趣导入。
1.同学们,我们已经学习了哪些多平面图形?(生回答)
2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)
【设计意图】:根据学生已有经验,观察生活中的组合图形,让学生体会由几个简单的图形组合而成是组合图形,它们的面积怎么求。使学生逐步熟悉组合图形,调动学生的学习兴趣。
二、小组合作探究
1.出示前置性作业小组交流
复习
1、说说你学过哪些平面图形?
2、说说这些图形的面积计算公式?
1)分割法:
将整体分成几个基本图形,求出它们的面积和。
2)添补法:
用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?
【设计意图】:学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立尝试、合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。
5.学生举例并解答(前置作业我的例子)
结合学生自己举的例子解答讲解
【设计意图】:让学生举出自己能够解决的例子,增强他们解决问题的自信心。
6.练一练(前置作业我能行)。
⑴生独立计算。
⑵生展示思路。
【设计意图】:学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学来源于生活,应用于生活的教育理念。
三、应用新知,解决问题:
师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。
师:通过刚才的练习,你认为该怎样求组合图形的面积?(生自由发言)
师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。
【设计意图】:练习的设计是加深学生对本节课知识的巩固,因此在设计上,我由浅入深,遵循学生的思维潜能。
四、总结:(前置作业我的收获)
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?
【设计意图】:通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。
《组合图形的面积》教案 5
【教学内容】
北师大教材五年级上册第一单元第一课时《组合图形面积》
【学校及学生状况分析】
我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
【教材分析】
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。
【本课教学目标】
1、知识与技能
(1)、在自主探索的活动中,理解计算组合图形面积的多种方法。
(2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)、能运用所学的知识,解决生活中组合图形的实际问题。
2、过程与方法:
让学生在自主探索的'基础上进行合作交流,从而归纳组合图形面积的计算方法。
3、情感态度与价值观:
(1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
(2)、渗透转化的数学思想和方法。
【教学重难点及关键:】
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
【课前准备:】
基本图形卡片、七巧板以及多媒体课件
【教学课时】一课时
【教学设计】
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)[板书:基本图形]
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)
(设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分另计算三角形与长方形的面积,然后相加。
《组合图形的面积》教案 6
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二、引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才我们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的'比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。
《组合图形的面积》教案 7
教材分析:
《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:
知识目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观
1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:
学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:
多媒体课件和组合图形图片。
教学过程:
一、激趣导入、复习铺垫、认识组合图形
1、介绍笑笑和她家的新房子
师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)
2、引导学生观察,复习有关平面图形面积的计算公式
师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?
3、欣赏图片(课件出示一组图片)
师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)
4、教师总结,揭示课题并板书
师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)
二、创设情境、探究新知
笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)
1、估计地板的面积
请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)
2、采用不同的方法求客厅的面积。
同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。
(1)生动手画图
(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?
3、师生归纳方法并比较
(1)观察找特点
根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)
(2)引导比较,对方法进行分类,找出最简单的'方法
师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)
(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)
(4)学生独立计算,四人板演。
(5)汇报交流,集体订正。
(6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)
4、归纳算法
刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。
师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三、实际应用、解决问题
1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)
(1)学生拿出先准备好的图形,动手画
(2)展示交流
2、计算墙壁的面积
观察图形选择方法独立计算汇报交流
同学们帮笑笑解决了难题,相信她会很感激大家的,我们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?]
(1)需要粉刷的面积一共是多少平方米?
(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?
观察图形选择方法独立计算汇报交流
3、求门油漆的面积。
师:同学们以自己的聪明才智帮笑笑又解决了一个难题,我们再听听她怎么说。
课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?
四、归纳小结、提升知识
这节课你学会了什么?
(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)
五、拓展延伸
师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。
1.6m 4 m 10
板书设计:
组合图形面积
S=ab 分割
S=aa S=ah 转化
基本图形
S=ah2 S=(a+b)2 添补
《组合图形的面积》教案 8
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:
组合图形的认识及面积计算、图形分析。
教具学具准备:
多媒体课件、各种基本图形纸片。
教学设计:
创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的`?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3.14×62
=3.14×36
=113.04(c㎡)
内圆的面积:πr2=3.14×22
=3.14×4
=12.56(c㎡)
圆环的面积:πR2-πr2=113.04-12.56
=100.48(c㎡)
解法二
π×(R2-r2)=3.14×(62-22)=100.48(c㎡)
答:圆环的面积是100.48c㎡。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75c㎡,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(c㎡),圆环的面积=π(R2-r2)=3.14×75=235.5(c㎡)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
《组合图形的面积》教案 9
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”
教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:
课件、图片等。
教学过程:
一、 创设情境,引导探索
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】
二、探索活动,寻求新知
师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。……
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积 = 三角形面积+长方形面积-正方形面积
图二:是由两个三角形组成的。
面积 = 三角形面积+ 三角形面积
图三:作辅助线使它分成一个大梯形和一个三角形。
方法一:是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计
(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?
方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
方法三:作辅助线使它分成一个大梯形和一个三角形。
(课件分别演示这三种方法)
分割法 添补法
师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转
变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。
板书:分割法或添补法(转化):分解成简单图形。
师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。……
这节课我们重点学习组合图形的面积。
【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】
三、探讨例题,学习新知
师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)
例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
师:怎样才能计算出这个组合图形的面积呢?
先让学生思考,再动手计算。
交流汇报
方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。
指名学生找相应的条件。
在实物投影仪上展出示学生的答案
①5×5=25 (平方米)
②5×2÷2=5(平方米)
③25+5=30 (平方米)
答:房子侧面墙的面积是30平方米。
(注意检查做错的同学,找出错的原因。)
师:除了这种方法,还有同学用别的方法吗?
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。
师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案
长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2
=35-5 =30(平方米)
答:房子侧面墙的面积是30平方米。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。
展示学生的答案
(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。
让学生发表意见。
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的.图形,然后分别求出它们的面积再相加。)
师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生
对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】
四、利用新知,解决生活中的问题。
做一做
刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。
方法一:把组合图形分割成两个 长方形。
4×3+3×7 =12+21 =33(c㎡)
方法二:分割成一个长方形和一个正方形。
4×6+3×3 =24+9 =33(c㎡)
第三种方法:分割成两个梯形。
(3+7)×3÷2+(3+6)×4
7×6-3×3 =42-9 =33(c㎡)
让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。
练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?
现在你能帮工人叔叔算算这
个指示路牌的面积吗?
【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】
五、课堂评价
师:这节课你学到了什么?
结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。
【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】
课堂检测A
1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?
现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要
2500元。如果让你决定,你会选择哪家公司?
2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!
课堂检测B
1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?
答案:课堂检测A
1、50×33+35×12÷2
=1650+210
=1860(厘米)
2、33×26-26×13÷2
=758+169
=927(厘米)
课堂检测B
1、(40+70)×30÷2-30×15
=1650-450
=1200(厘米)
2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)
《组合图形的面积》教案 10
教学内容:
北师大版教科书第九册第75~76页的内容
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的`主动性,培养热爱数学的思想感情。
重点、难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
教具准备:
多媒体课件和组合图形图片。
教学过程:
一.引出概念,揭示主题。
1.你能看出以下图形是由那些基本图形组成的吗?
2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。
二.新授。
这是我家的客厅平面图!(课件出示客厅的平面图。)
1、估计地板的面积
师:请同学们先估一估这个地板的面积有多大呢?
2、探索不同方法。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。
生动手画图。
教师有选择的展示方法。
3.师总结分割法和添补法。
其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
4.计算:
现在你会计算这个组合图形的面积吗?
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
5.汇报计算方法及结果。
6.辨析及总结。
(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?
分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三.巩固练习。
1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。
四.小结:谈谈你的收获!
五.板书:
组合图形面积
图11.转化
图22.找条件
图33.计算图
《组合图形的面积》教案 11
教学内容:
教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。
教学目的:
使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。
教具准备:
将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。
教学过程:
一、复习
问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)
二、新授。
1、教学例题。
教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)
问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)
我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)
现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)
:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)
2、做例题下面”做一做“中的题目。
先让学生读题。
问:“这块菜地可以看成是由哪些图形组合而成?”
让每个学生在练习本上列式计算。做完后集体核对。
三、巩固练习。
做练习二十一中的题目。
第3题,投影片出示一面少先队的中队旗。
问:要计算这面中队旗的`面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。
第4题,先让学生读题,再问:
“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)
“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)
学生在练习本上列式计算,再集体订正。
四、作业。
练习二十一的第1题和第2题。
《组合图形的面积》教案 12
教学内容:
义务教育课程标准实验教科书人教版数学五年级上册第92~93页例4。
教学目标:
1.联系已有知识认识组合图形,会把组合图形分解成已学过的平面图形,能正确计算组合图形的面积。
2.通过观察、操作、分析,初步认识转化思想方法在组合图形面积计算中的运用;提高观察、分析、综合和运用转化的方法解决实际问题的能力。
3.增强探索数学的自觉性与创新意识,体验成功解决数学问题的愉悦。
教学重点:
将组合图形转化成若干个已学过的基本图形。
教学难点:
根据组合图形的特点灵活进行转化,并找出隐含在图形中的条件。
教具、学具准备:
教师准备多媒体课件、实物投影仪;学生准备七巧板。
教学过程:
一、复习旧知,激疑导入
1.复习平面图形的面积。
(1)出示下列图形,让学生说说每个图形的面积怎样计算?
(2)学生说后,教师依次在图形的下面写上面积算公式:
S=ab S=a2 S=ah S=ah2
S=(a+b)h2
2.观察组合图形,激疑导入。
教师(投影)出示组合图形:房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形。
师:这些图形与我们学过的哪些图形相同?怎样计算它们的面积?(引导学生观察思考并说明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)
(设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题水到渠成。)
二、观察分析,探索方法
1.认识组合图形。
(1)在组合图形中找一找简单图形。
师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?
(学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)
(2)找一找生活中见过的组合图形。
师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?
(3)小组议一议,画一画组合图形。
(4)小结:组合图形是由几个简单图形组成的平面图形。
(设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的认识。)2.探索组合图形面积的'计算方法。
师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。
(1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?
(2)探索计算方法。
教师发给每个学生印有上图的练习纸,按下列要求完成:
①想一想:这个图形是由哪几个简单图形拼成的?
②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?
③找一找:寻找计算组合图形面积的条件。
④算一算:学生独立尝试计算组合图形的面积。
⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。
方法一:求一个梯形和一个长方形面积的和。
(4+8)(10-5)2+54
=30+20
=50(m )
方法二:求一个梯形和一个三角形面积的和。
(5+10)42+8(10-5)2
=30+20
=50(m )
方法三:求一个三角形和一个长方形面积的和。
(10-5)(8-4)2+104
=10+40
=50(m )
方法四:求两个三角形面积的和。
1082+542
=40+10
=50(m )
方法五:从一个长方形的面积中减去一个梯形的面积。
108-(10+5)(8-4)2
=80-30
=50(m )
⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?
3.小结计算方法。
先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。
教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。
(设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力
1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?
师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?
(1)让学生独立完成。学生一般能想出下面两种方法:
①求两个梯形面积的和。
②求一个长方形和两个三角形面积的和。
(2)组织小组交流,引导学生想出第三种方法:
从一个长方形的面积减去一个三角形的面积。
(3)评价小结。
师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。
2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?
师:先观察这幅图,想一想可以怎样求阴影部分的面积?
(1)让学生独立完成。
(2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?
(3)反馈评价。
3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?
师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?
(1)让学生独立完成。
(2)组织小组交流。
(3)引导反馈评价。
(4)自己订正错误。
4.摆一摆,量一量,算一算。
(1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?
(2)想一想,还有别的组合方法吗?再动手拼一拼。
(3)说一说,你是用哪四个图形组合起来的?
(4)量一量,量出求组合图形需要的有关数据。
(5)算一算,计算出组合图形的面积。
(6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。
(设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)
四、全课总结,情知共融
师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?
《组合图形的面积》教案 13
教学目标:
使学生初步了解组合图形面积计算的方法,会计算一些较简单的组合图形的面积。
教学过程:
一、复习
1、提问:是什么?面积怎么计算?(生答师板书出面积公式)
2、这些图形的面积我已经会算了,但在实际生活中,有些图形是由几个简单的图形组合而成的。这种组合图形的面积该怎么计算呢?今天我们来学习这个内容。出示课题:组合图形面积的计算
二、新课教学
1、教学例题
师:组合图形就是由我们学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有时需要计算这些组合图形的面积。例如房子侧面墙的形状是这样的:(出示图)
⑴、计算这个图形的面积我们学过吗?
⑵、小组讨论能否把它分成几个我们学过的图形?
⑶、汇报:这个图形分成了一个三角形和一个正方形,它的面积就是这两个图形的和。
⑷、学生在书上完成,集体订正。
⑸、:在实际生活中见到的物体,有很多是由我们学过的这些基本图形组合而成的.。计算组合图形的面积,应鸹把它分成简单图形,分别计算各块的面积,再把它们合起来就行了。
2、试一试
90页“做一做”
⑴、看图,说说这个图形由哪些图形组合成?
⑵、独立练习
⑶、订正
三、巩固练习
第二题出示中队旗
小组讨论有几种解法。
独立做
汇报:说说你的想法。
第四题理解题意
独立思考,小组交流
做出来
四、作业
练习二十一(1、2)
板书设计:
组合图形的面积计算
教后感:
《组合图形的面积》教案 14
学习目标:
1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。
3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。
教学重点:
能根据条件求组合图形的面积。
教学难点:
理解分解图形时简单图形的差。
教具准备:
图形卡片
教学过程:
一、联系学生生活,引入新课。
数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:
1.实物投影:同学们,你们说说这些图形像什么?
师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?
师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。
2.出示基本图形,从而复习已学过的基本知识。
师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)
二、教学新课。
学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。
教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?
1.在拼图活动中认识组合图形。
师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)
师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?
生:利用实物投影展示自己的作品。
师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)
师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)
师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。
师:说说这里面有你认识的图形吗?你是怎样看出来的?
师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)
师:学生展示交流结果。
(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)
师:刚才大家的学习都很积极努力,接下来要继续加油呀!
2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。
我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。
3.在探索活动中寻找计算方法。出示例题:
师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。
师:现在请你估计一下,客厅的面积有多大?
师:这个图形实际上就是一个什么图形?
师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)
师:那么你想怎样求这个图形的面积呢?
学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的`方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。
小组活动:请同学们利用自己手上的题纸,分一分,算一算。
师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)
学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。
师:根据不同的方法,请学生给这些方法分一分类。
师:板书:分割法和添补法。
师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)
师:说说你喜欢那种方法?为什么?
师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。
利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。
让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。
三、习题设计:
1.出示图形进行练习
试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。
(1)这张硬纸板还剩下多大的面积?
(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?
(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。
四、小结。
师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?
把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。
《组合图形的面积》教案 15
教学目标:
1、了解组合图形的面积的计算方法并能正确地进行计算
2、培养学生的识图能力和分析能力
3、培养学生交流合作及创新精神
教学重难点:
把组合图形分割成已学过的平面图形
教学准备:
多媒体课件、剪刀、纸片
教学过程:
一、 复习导入:
(1)多媒体1展示已学过的平面图形:长方形、正方形、平行四边形、三角形、梯形,学生分别说出其面积公式
(2)多媒体2展示几个组合图形,借机问这些图形与前面的图形有什么不同,得出组合图形由几个简单的图形组合而成
(3)对于这些组合图形,它们的面积怎样计算呢?引出课题并说明本节课的学习任务
二、参与活动,学习新知:
1、认识组合图形
师:组合图形在日常生活中比较常见,那你说一说所见到的组合图形由那些图形组合而成
生1:教室的窗户是由长方形和正方形组合而成
生2:房子的屋山由三角形和长方形组合而成
生3:地面由正方形组合而成
生4:梯子由一个一个的梯形组合而成
师:我也带来了一些组合图形,请同学们看一下。(展示多媒体3房子、风筝、少先队队旗、七巧板)
2、计算组合图形的面积
多媒体4展示,让学生理解题意。
师:拿出准备好的纸片、剪刀,用纸片代表侧面墙,现在请同学们动手操作一下,可以把它分成那些图形?(师巡回指导)
师:那位同学到前面展示一下,并说说你的想法
生1:把它分成一个三角形和一个正方形,然后把三角形和正方形的面积相加
生2:把它分成两个完全一样的梯形,然后把它们的面积相加
师:找两位同学把刚才两位同学的想法解答出来。
(二生板书并订正)
师:你喜欢哪种方法
生:第一种或第二种并说明原因…………
师:在计算组合图形的面积时有多种方法,同学们要认真观察,多动脑筋,选择自己喜欢而又简便的方法进行计算
师:通过刚才的'学习,你认为应该怎样计算组合图形的面积呢?
生:…………
师(总结):把组合图形分解成前面已经学过的简单图形,再把它们的面积相加。
3、拓展与创新
师:同学们刚才都做得很好,你愿意接受新的挑战吗?
生:愿意
多媒体5展示,让学生弄清题意,思考一下
师:哪位同学上来展示一下,并说一下你的解题思路。
让学生指着图形说解题思路。
生1:把队旗沿中间分开,可以分成两个完全一样的梯形。上底是60cm,下底是80cm ,高是30cm,一个梯形的面积是(60+80)×30÷2,整个队旗的面积是(60+80)×30÷2×2
生2:我是用整个图形的面积减去空白的面积就是队旗的面积。长方形的长是80cm,宽是60cm,长方形的面积是80×60.三角形的底是60 cm,高是20cm,三角形的面积是60×20÷2,所以整个队旗的面积为80×60-60×20÷2
生3:沿着三角形的顶点做一条竖直的线,队旗分为一个长方形和两个三角形。长方形的长是60cm,宽是60cm,长方形的面积是60×60。三角形的底是30cm,高是20cm,一个三角形的面积是20×30÷2,两个三角形的面积是20×30÷2×2,整个队旗的面积为60×60+20×30÷2×2
师:请同学们把刚才同学的想法解答出来。
本题有多种算法,可自由选择,作对即可。培养学生的思维拓展能力,学会从多角度思考并解决问题。
三、 学生巩固练习
教师展示习题,学生巩固强化多媒体6、7、8
四、小结
今天这节课你学到了那些知识?哪位同学起来说一下
四、 布置作业
练习十八1、3
《组合图形的面积》教案 16
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的'面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
<<<12>>>
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
《组合图形的面积》教案 17
教学目标:
1、在自主探索活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:
能正确计算组合图形的面积。
教学难点:
能根据各种组合图形的条件,正确选择计算方法并解答。
教学准备:
A4纸 基本图形 作业练习
教学过程:
一、 谈话激趣,揭示课题
师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:
1、 给学生发礼物
2、 复习各个平面图形的面积公式
(这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)
3、 拼成自已喜欢的组合图形
请选择两个或两个以上的图形拼成你喜欢的图形。
4、 学生展示并说一说由哪些基本图形组成的。
(师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)
5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。
二、 探索交流,解决问题
1、 出示教材第88页的情境图
师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。
2、 想一想,估一估
先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)
(若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。
师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?
3、 自主探索,计算面积
师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。
(师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。
(1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)
4、展示学生的作品,并由学生说说理由。(怎样计算的?)
5、(展示四种已计算的分法)再对前四种进行分类
(师:
分割法:
添补法:
割补法:
(师:图形分割后我们要看一看分割后计算每个图形面积所要的`数据有没有?)
板书:
1、先转化成已学过的基本图形。
2、分割后的图形是否可以计算。
3、分割后的图形是否比较简单易算。
师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。
三、 理解运用,巩固练习
师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。
老师出两题考考大家,敢接受挑战吗?
1、 出示练习,学生做在练习纸上。
2、 讲评完第一题后,操作第二题。
四、 学生畅谈收获
通过这节课的学习,你在什么收获?
《组合图形的面积》教案 18
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
【教学过程】
一、展示汇报,建立概念。
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。
为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的'组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
二、在探索过程中,寻求计算方法。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:
①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
三、利用新知,解决生问题。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
《组合图形的面积》教案 19
教学目标:
1、认识组合图形,会把组合图形分解成已经学过的平面图形。
2、通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作能力。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的面积计算方法。
一,复习引入
1,师:大家知道哪些简单的平面图形?
生:长方形,正方形,平行四边形,三角形-------
师:今天老师是也带来了一些简单的平面图形,请看.
(课间出示长,正,平,三,梯)
师:大家知道他们的面积计算公式马吗?
生说公式,同时师课间出示.
师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!
(课间出示;风筝房屋的侧面七巧板中队旗)
师:你能看到那些简单的平面图形?同桌之间说说看。
汇报:重点说中队旗分成两个梯形。
引出“组合图形”的定义,课件出示定义。
板书:组合图形
2,寻找身边的组合图形
师:其实我们身边还有很多这样的组合图形,大家找找看。
(教师窗户,防盗窗)
师:今天我们就来学习怎么计算组合图形的'面积?
板书:的面积
二,探究新知
教学例4:房屋侧面
1,先出示没有数字的图形
师:可以直接利用我们学过的面积公式来计算吗?
生:不能
师:那可以怎样计算呢?同桌之间说说看?
汇报:可以分成两个梯形,可以分成一个三角形和一个长方形
师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。
学生做,师巡视指导,搜集作品。,
2,投影展示学生作品:
方法一:转化成三角形+长方形
让学生说一说他的做法,重点问转化成了什么图形?
问:大家看懂了吗?每一步表示什么意思呢?
掌声送回学生一
方法二:转化成两个相同的梯形
(多让其他学生说一说分发)
3,比较两种方法
课件同时出示两种做法
师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?
生:都是把组合图形分成成了已经学过的简单的平面图形。
师:像这种分发在数学上叫分割法。板书:分割法
分割
板书:组合图形简单的平面图形
求和
小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。
师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。
三:练习
1,“做一做”
让学生独立完成,找一学生上黑板板演,找另一学生评价。
在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)
教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。
2,中队旗
先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。
先讲两种分割法,重点讲解“填补法”
师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?
生:长方形的面积-三角形的面积=组合图形的面积
师:这位同学的想法真独特,想这种方法叫填补法。
板书:填补法
师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。
板书:求和
小结:我们在怎么求出组合图形的面积的?
强调:转化优化
四:小结:这节课你有什么收获?
《组合图形的面积》教案 20
教学目标:
1、在自由探索的活动中,理解计算组合图形面积的各种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:
能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。
教学难点:
如何选择有效的计算方法解决问题。
教学准备:
图形卡片、题卡
教学过程:
一、激趣导入。
1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。
生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。
2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。
生拿基本图形拼。
指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。
3、揭示课题。
这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。
4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?
二、探究新知。
1、出示例题。
老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?
你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。
生先说估计值,并说出依据,教师在黑板右上角板书。
2、小组探索。
刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的面积。我们没有学过这种图形的面积,怎么办呢?
生:我们可以把它转化成我们学过的图形再求面积。
小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。
教师巡视指导。
3、全班汇报交流。
小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。
教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。
生共同探索所说的方法是否能求出面积,不合适的说出为什么。
把以上方法汇总,说说哪种方法最简单,为什么?
师:分割或添补的越简单,计算起来就会越简便。
4、教师贴出学生选出的
4种简便方法,用卡纸贴在黑板上。
生观察着几种方法,把它们分类。
师相应板书:分割法添补法
这两种方法在计算时有什么不同吗?
6、选择一种你最喜欢的方法,计算出图形的`面积。
指名板演。检查订正,写出答语。
把实际结果与估计结果比较,看看谁估计的比较准。
师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。
三、实际应用。
1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。
2、学校要粉刷教室,粉刷一面墙每平方米需用
0.15千克涂料,一共需要用多少千克涂料?
生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。
3、学校要油漆
60扇教室的门的外面,(单位:米)。
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费
5元,那么学校共要花费多少元?
指名读题,说说完成这道题要注意什么?
生独立完成。汇报。
四、全课总结。
你说说这节课你有什么收获。
师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!
五、课外练习。
在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。
【《组合图形的面积》教案】相关文章:
《组合图形的面积》教案07-06
组合图形的面积说课稿06-10
《组合图形面积》教学反思09-10
《组合图形的面积》的听课笔记10-15
数学《组合图形的面积》说课稿09-23
组合图形的面积教学反思06-08
《组合图形面积的计算》教学反思06-28
再上《组合图形的面积》反思范文07-09
《组合图形面积计算》的教学反思10-31