小学数学复习资料

时间:2024-04-12 18:29:40 考试资料 我要投稿

小学数学复习资料

小学数学复习资料1

  平方关系:

小学数学复习资料

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  直角三角形ABC中,

  角A的`正弦值就等于角A的对边比斜边,

  余弦等于角A的邻边比斜边

  正切等于对边比邻边,

  余切等于邻边比对边

  互余角的三角函数间的关系:

  sin(90°-α)=cosα, cos(90°-α)=sinα,

  tan(90°-α)=cotα, cot(90°-α)=tanα.

小学数学复习资料2

  1、王老师到体育用品商店买了5只小足球,付出 00元,找回32.5元,每只小足球多少元?

  2、甲乙两辆汽车同时从相距255千米的两地相对开出,甲车每小时行52千米,乙车每小时行57千米,经过几小时后两车还相距37千米?

  3、师徒二人共加工208个机器零件,师傅加工的零件数比徒弟的2倍还多4个,师傅和徒弟各加工多少个零件?

  4、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?

  5、五年级买一批笔记本奖给三好学生,如果每人奖给5本,还剩3本;如果每人奖给6本,又少 2本。五年级评出三好学生多少名?买了多少本笔记本?

  6、山坡上有羊80只,其中白羊是黑羊的.4倍,山坡上黑羊、白羊各多少只?

  7、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?(用两种方法解)

  8、一块梯形麦田,面积是540平方米,高 8米,上底是20米,下底是多少米?

  9、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?

  10、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面 3.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?

小学数学复习资料3

  1.位置:所在或所占的地方,有上下、前后、左右之分。

  上:位置方位名词,例:汽车在马路的上面。

  下:位置方位名词,例:船在桥的下面。

  前:位置方位名词,例:张三在李四的前排,那么可以说张三在李四的前面。

  后:位置方位名词,例:李四在张三的.后排,那么可以说李四在张三的后面。

  2.退位减:减法运算中必须向高位借位的减法运算。

  20以内的数字之间的退位减法,例:12-9=3.

  3.图形的拼组(作风车):

  4.数一数:#FormatImgID_1#

  5.读数:24读作“二十四”;169读作“一百六十九”。

  6.比较数的大小:先比较高数位的数学,再按照数位的高低依次比较。

  例:39和145比较大小,39百位数字为0,145百位数字为1,0小于1,所以39小于145

  7.100以内数的认识:100读作“一百”,等于10个10相加;99读作“九十九”,等于100减去1.

小学数学复习资料4

  1.百分数与分数的区别

  (1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系。

  (2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

  (3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的'要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.

  (4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

  2.百分数应用

  (1)百分数一般有三种情况:

  ①100%以上,如:增长率、增产率等。

  ②100%以下,如:发芽率、成长率等。

  ③刚好100%,如:正确率,合格率等。

  (2)日常应用

  如:今天夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%。20%、10%让人一目了然,既清楚又简练。

小学数学复习资料5

  一、常用的数量关系式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  二、小学数学图形计算公式

  1、正方形(C:周长S:面积a:边长)

  周长=边长×4 C=4a

  面积=边长×边长S=a×a

  2、正方体(V:体积a:棱长)

  表面积=棱长×棱长×6 S表=a×a×6

  体积=棱长×棱长×棱长V=a×a×a

  3、长方形(C:周长S:面积a:边长)

  周长=(长+宽)×2 C=2(a+b)

  面积=长×宽S=ab

  4、长方体(V:体积s:面积a:长b:宽h:高)

  (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

  (2)体积=长×宽×高V=abh

  5、三角形(s:面积a:底h:高)

  面积=底×高÷2 s=ah÷2

  三角形高=面积×2÷底三角形底=面积×2÷高

  6、平行四边形(s:面积a:底h:高)

  面积=底×高s=ah

  7、梯形(s:面积a:上底b:下底h:高)

  面积=(上底+下底)×高÷2 s=(a+b)× h÷2

  8、圆形(S:面积C:周长л d=直径r=半径)

  (1)周长=直径×л=2×л×半径C=лd=2лr

  (2)面积=半径×半径×л

  9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)

  (1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2

  (3)体积=底面积×高(4)体积=侧面积÷2×半径

  10、圆锥体(v:体积h:高s:底面积r:底面半径)

  体积=底面积×高÷3

  11、总数÷总份数=平均数

  12、和差问题的公式

  (和+差)÷2=大数(和-差)÷2=小数

  13、和倍问题

  和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)

  14、差倍问题

  差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)

  15、相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  16、浓度问题

  溶质的重量+溶剂的重量=溶液的重量

  溶质的重量÷溶液的'重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

  17、利润与折扣问题

  利润=售出价-成本

  利润率=利润÷成本×100%=(售出价÷成本-1)×100%

  涨跌金额=本金×涨跌百分比

  利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-20%)

  三、常用单位换算

  1、长度单位换算

  1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

  2、面积单位换算

  1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米

  1平方分米=100平方厘米1平方厘米=100平方毫米

  3、体(容)积单位换算

  1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升

  1立方厘米=1毫升1立方米=1000升

  4、重量单位换算

  1吨=1000千克1千克=1000克1千克=1公斤

  5、人民币单位换算

  1元=10角1角=10分1元=100分

  6、时间单位换算

  1世纪=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月

  平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时

  1时=60分1分=60秒1时=3600秒

小学数学复习资料6

  1、常见分数、小数、百分数互化。

  2、常见圆周率的倍数。

  1×3.14=3.142×3.14=6.28

  3×3.14=9.424×3.14=12.56

  5×3.14=15.76×3.14=18.84

  7×3.14=21.988×3.14=25.12

  9×3.14=28.2616×3.14=50.24

  25×3.14=78.536×3.14=113.04

  3、常见基本数量关系式。

  (一)基本算式

  被除数÷除数=商

  被除数=商×除数

  除数=被除数÷商

  一个因数×另一个因数=积

  一个因数=积÷另一个因数

  另一个因数=积÷一个因数

  一个加数+另一个加数=和

  一个加数=和—另一个加数

  另一个加数=和—个加数

  (二)行程问题

  路程=速度×时间

  速度=路程÷时间

  时间=路程÷速度

  (三)购买东西

  总价=单价×数量

  单价=总价÷数量

  数量=总价÷单价

  (四)工程问题

  工作量=工作效率×时间

  工作效率=工作量÷时间

  时间=工作量÷工作效率

  (五)利息问题

  利息=本金×利率×时间

  利率=利息÷本金÷时间

  时间=利息÷本金÷利率

  4、常见单位换算

  (一)面积单位

  1平方米=100平方分米

  1平方分米=100平方厘米

  1公顷=10000平方米

  1平方千米=100公顷

  1毫升=1立方厘米

  (二)体积、容积单位

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1升=1000毫升

  1升=1立方分米

  5、常见公式。

  (一)圆的周长、面积

  周长C=2πr或c=πd

  面积S=πr

  (二)圆柱、圆锥侧面积、表面积

  (三)圆柱、圆锥体积

  圆柱体积=底面积×高

  圆锥体积=底面积×高×1/3

  6、常见应用题类型。

  (一)分数、百分数问题

  (1)求一个数的几分之几、百分之几是多少。

  (一个数×几分之几(百分之几))

  (2)求一个数是另一个数的(几倍)几分之几、百分之几。

  (一个数÷另一个数)

  (3)求一个数比另一个数多(少)几分之几、百分之几。

  ((大—小)÷“比”字后面的)

  (4)已知一个数的几分之几(百分之几)是多少,求这个数。

  (多少÷几分之几(百分之几))

  (5)已知比一个数多几分之几(百分之几)是多少,求这个数

  (多少÷(1+几分之几(百分之几)))

  (6)已知比一个数少几分之几(百分之几)是多少,求这个数

  (多少÷(1-几分之几(百分之几)))

  (7)前面是分数、百分数、后面是比,先把比转化为分数、百分数再计算。

  (8)单位“1”已知用乘法,单位“1”未知用除法或方程。

  (9)单位“1”的判断:“的”字前面的,“是”、“相当于”、“占”、“比”字后面的。

  (二)比例尺问题

  比例尺=图上距离/实际距离

  图上距离=实际距离×比例尺

  实际距离=图上距离÷比例尺

  (三)鸡兔同笼、租车船、租住房问题

  设大的为未知数x,根据等量关系列出方程求解

  (四)圆柱、圆锥体积的应用

  ①圆柱变圆锥,求圆锥高或底面积

  ②不规则物体体积相关计算不规则物体浸入水中,水面上升,求其体积

  (五)按比分配(求出总份数,再用总份数×各部分对应的分率)

  (六)行程问题

  ①相遇问题(甲走的路程+乙走的路程=总路程,等量关系是甲乙所用时间相等)

  ②追击问题(快的走的路程—慢的走的路程=二者相差路程,等量关系是甲乙所用时间相等)

  (七)工程问题

  工作量=工作效率×时间

  工作效率=工作量÷时间

  时间=工作量÷工作效率

  (八)利息问题

  利息=本金×利率×时间

  利率=利息÷本金÷时间

  时间=利息÷本金÷利率

  (九)溶液浓度问题

  ①溶液质量=溶质质量+容积质量

  ②溶液浓度=溶质质量/溶液质量

  (十)合格率、发芽率、出勤率问题

  合格率、发芽率、出勤率=合格数、发芽数、出勤数÷总数

  7、常见基本性质

  ①等式的基本性质:

  A.等式两边都加上或减去同一个数,结果还是等式;B.等式两边都乘或除以同一个不为0的数,结果还是等式。

  ②分数的基本性质:分数的分子和分母都乘或除以同一个不为0的数,分数值不变。

  ③比的基本性质:比的前项和后项都乘或除以同一个不为0的数,比值不变。

  ④比例的基本性质:在比例里,两个内项的积等于两个外项的积。

  8、比、分数、除法的关系:

  比的前项相当于分数的分子、除法的'被除数,比的后项相当于分数的分母、除法的除数,比值相当于分数值、商。

  9、简便运算的类型:

  ①加法结合律:分母相同的先相加减,和差为整数的先相加减。

  ②乘法结合律:能约分的先相乘,积为整数的先相乘。

  ③乘法分配律:能约分的或积为整数的先用括号外的数乘括号内的每一个数;有相同因数的,先把相同因数提出括号外,剩下的因数用括号括起来,再相加减。

  ④添括号、去括号法则:减去一个数,再减去另一个数,等于减去这两数的和。

  10、解决问题的关键、方法、步骤、策略

  ①方程:找出已知量、未知量和等量关系,可以画线段图找等量关系。

  步骤:一审、二找、三设、四列、五解、六验、七答。

  ②计算类:列表法、假设法、画图法、类比法、列举法、转化法、化归法、排除法等。

  答题策略:

  1、考前准备好考试用品(笔、橡皮、直尺等),调整好心态,不紧张,不着急;

  2、态度端正,认真审题,认真对待每一道题;

  3、不早交卷,做完认真检查,不可大意,不要留空白,尤其是选择、判断、填空等题;

  4、一般先做会的、简单的、分值大的,后做难得、不会的;

  5、书写认真、规范,步骤齐全,有条理,有层次,字迹工整,卷面整洁。

小学数学复习资料7

  1.和差问题:

  (和 差)÷2=大数,(和-差)÷2=小数

  2.和倍问题:

  和÷(倍数-1)=小数,小数×倍数=大数(或者 和-小数=大数)

  3.差倍问题:

  差÷(倍数-1)=小数,小数×倍数=大数(或 小数 差=大数)

  4.植树问题:

  (1 )非封闭线路上的植树问题主要可分为以下三种情形

  a.如果在非封闭线路的两端都要植树,那么

  株数=段数 1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  b.如果在非封闭线路的一端要植树,另一端不要植树,那么

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  c.如果在非封闭线路的两端都不要植树,那么

  株数=段数-1=全长÷株距-1

  全长=株距×(株数 1)

  株距=全长÷(株数 1)

  (2) 封闭线路上的`植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  5.盈亏问题:

  (盈 亏)÷两次分配量之差=参加分配的份数

  (大盈-小盈)÷两次分配量之差=参加分配的份数

  (大亏-小亏)÷两次分配量之差=参加分配的份数

  6.相遇问题:

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  7.追及问题:

  追及距离=速度差×追及时间

  追及时间=追及距离÷速度差

  速度差=追及距离÷追及时间

  8.流水问题:

  顺流速度=静水速度 水流速度

  逆流速度=静水速度-水流速度

  静水速度=(顺流速度 逆流速度)÷2

  水流速度=(顺流速度-逆流速度)÷2

  9.浓度问题:

  溶质的重量 溶剂的重量=溶液的重量

  溶质的重量÷溶液的重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

  10.利润与折扣问题:

  利润=售出价-成本

  利润率=利润÷成本×100%=(售出价÷成本-1)×100%

  涨跌金额=本金×涨跌百分比

  折扣=实际售价÷原售价×100%(折扣<1)

  利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-20%)

  11.时间单位换算:

  1世纪=100年,1年=12月;

  大月(31天)有 135781012月,小月(30天)的有46911月;

  平年2月28天,闰年2月29天,平年全年365天,闰年全年366天;

  1日=24小时,1时=60分,1分=60秒,1时=3600秒

小学数学复习资料8

  小学数学复习的方法

  一、制定切实可行的复习计划,并认真执行计划。为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。

  二、分类整理、梳理,强化复习的系统性。复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。做到梳理——训练——拓展,有序发展,真正提高复习的效果。

  三、辨析比较,区分弄清易混概念。对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析,这样能全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。

  四、一题多解,多题一解,提高解题的灵活性。有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。

  小学数学知识要点汇总

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

  2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式(每两个相邻的时间单位之间的进率是60):

  1时=60分

  1分=60秒

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年

  1年=12个月

  【分数的初步认识】

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

  ②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

  人教版小学六年级上册数学知识点复习

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

  3、求倒数的'方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1

  0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

  假分数的倒数小于或等于1。带分数的倒数小于1。

  (六)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、什么是速度?

  速度是单位时间内行驶的路程。

  速度=路程÷时间时间=路程÷速度路程=速度×时间

  单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  4、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙少:(乙-甲)÷乙

小学数学复习资料9

  【复习内容】教科书p96

  【复习提纲】

  1.在预习本上画出一条直线,并在直线上截取出一条射线、一条线段,你发现了什么?

  2.在预习本上分别画一组垂线,平行线,思考:(1)同一平面内的两条直线有哪几种位置关系?(2)两条平行线之间的距离有什么特征?

  3.在预习本上画出直角、锐角、钝角、平角、周角各一个,并标上度数。

  4.延长角的两边,角的大小是否发生变化?思考:角的大小与什么有关?

  【课题】平面图形周长和面积的计算

  【复习内容】教科P96-97

  【复习提纲】

  1.举例说一说我们已经学过的平面图形的特点。

  思考(1)平行四边形、长方形和正方形之间的`关系。

  (2)三角形按照边、角如何分类?把你的想法记录下来。

  2.“圆,一中同长也”是什么意思?

  3.举例说明什么是平面图形的周长,什么是平面图形的面积?

  4.完成教科书P97“各个图形周长和面积的计算公式”,并简要描述有关面积公式之间的联系。

  5.尝试完成课本“做一做”。

  【课题】立体图形的复习

  【复习内容】教科书P98

  【复习提纲】

  1.我们学过的立体图形有哪些?如果从图形的面、棱、顶点来观察比较,长方体和正方体有哪些联系和区别?如果从底面、侧面、高来看那圆柱和圆锥有哪些联系和区别?把你知道的记录下来。

  2.举例说明什么是立体图形的表面积和体积?

  3.将书本P98例4表格填写完整,并说一说长方体、正方体、圆柱、圆锥体积公式和联系。

  4.尝试完成p98“做一做”。

  【课题】图形与变换

  【复习内容】教科书P103

  【复习提纲】

  1.我们学过哪些轴对称图形,尝试着把它画在自己的预习本上,并画出它们的对称轴。

  2.生活中有哪些旋转和平移的现象?

  3.尝试完成教科书P103“做一做”并思考:有A—D是怎么变过来的?

  【课题】图形与位置

  【复习内容】教科书P106

  【复习提纲】

  1.结合课本提供的地图说一说从阳光小区到公园的路线,并计算每条路线的距离。

  2.尝试完成P107第二题,思考:如何确定物体的位置,以及数对(5,6)表示什么?

小学数学复习资料10

  1 、正方形 C周长 S面积 a边长

  周长=边长×4 C=4a 面积=边长×边长 S=a×a

  2 、正方体 V:体积 a:棱长

  表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

  3 、长方形

  C周长 S面积 a边长

  周长=(长+宽)×2

  C=2(a+b)

  面积=长×宽

  S=ab

  4 、长方体

  V:体积 s:面积 a:长 b: 宽 h:高

  (1)表面积(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  (2)体积=长×宽×高

  V=abh

  5 三角形

  s面积 a底 h高

  面积=底×高÷2

  s=ah÷2

  三角形高=面积 ×2÷底

  三角形底=面积 ×2÷高

  6 平行四边形

  s面积 a底 h高

  面积=底×高

  s=ah

  7 梯形

  s面积 a上底 b下底 h高

  面积=(上底+下底)×高÷2

  s=(a+b)× h÷2

  8 圆形

  S面积 C周长 ∏ d=直径 r=半径

  (1)周长=直径×∏=2×∏×半径

  C=∏d=2∏r

  (2)面积=半径×半径×∏

  9 圆柱体

  v:体积 h:高 s;底面积 r:底面半径 c:底面周长

  (1)侧面积=底面周长×高

  (2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

  10 圆锥体

  v:体积 h:高 s;底面积 r:底面半径

  体积=底面积×高÷3

  看一看各单元的试卷 还有练习册 1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

  一般先看横的数字,再看竖的数字,注意中间是逗号

  2.分数乘法的意义:一个数×分数 如4×23 表示:求4的 23 是多少?

  分数×一个数 如 23×4 表示:求23 的4倍是多少?

  3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

  4.除以一个不等于0的数,等于乘这个数的倒数

  5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

  6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

  7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

  8.有关圆的公式:

  C= 兀d = 2兀r S =兀r 2

  d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

  圆环的`面积S = 兀 R 2-兀 r 2

  9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

  利息税=本金×利率×时间×20% 或者 利息税=利息×20%

  税后利息=本金×利率×时间×(1-20%) 或者 税后利息=利息×(1-20%)

  交税后一共可取回多少钱=本金+本金×利率×时间×(1-20%)

  10.条形统计图:可以清楚的看出数据的多少

  折线统计图:可以清楚的看出数据的增减变化趋势(一般跟时间有关)

  扇形统计图:可以清楚的看出各部分同总数之间的关系

小学数学复习资料11

  小学数学复习资料之必备公式大全

  1、每份数×份数=总数

  总数÷每份数=份数

  总数÷份数=每份数

  2、1倍数×倍数=几倍数

  几倍数÷1倍数=倍数

  几倍数÷倍数=1倍数

  3、速度×时间=路程

  路程÷速度=时间

  路程÷时间=速度

  4、单价×数量=总价

  总价÷单价=数量

  总价÷数量=单价

  5、工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  6、加数+加数=和

  和-一个加数=另一个加数

  7、被减数-减数=差

  被减数-差=减数

  差+减数=被减数

  8、因数×因数=积

  积÷一个因数=另一个因数

  9、被除数÷除数=商

  被除数÷商=除数

  商×除数=被除数

  1、正方形

  C周长S面积a边长

  周长=边长×4

  C=4a

  面积=边长×边长

  S=a×a

  2、正方体

  V:体积a:棱长

  表面积=棱长×棱长×6

  S表=a×a×6

  体积=棱长×棱长×棱长

  V=a×a×a

  3、长方形

  C周长S面积a边长

  周长=(长+宽)×2

  C=2(a+b)

  面积=长×宽

  S=ab

小学数学复习资料12

  分数的意义和性质:

  1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  2、一些物体﹑一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的`一份或几份都可以用分数来表示。这就是分数的意义。

  3、一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  4、把单位“1”平均分为若干份,表示其中的一份的数叫分数单位。如:2/3的分数单位是1/3。

小学数学复习资料13

  1、因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数。

  2、求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的。

  3、求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……

  4、一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。

  5、一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。

  6、个位上是0,2,4,6,8的数,都是2的倍数,也是偶数。

  7、自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。

  8、个位上是0或者5的数,都是5的倍数。

  9、个位是0的数,既是2的倍数,又是5的倍数。

  10、一个数各位上的和是3的倍数,这个数就是3的倍数。

  11、只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。

  12、整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数

  13、将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?

  14、最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是120

  15、奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。

  16、a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a—b的差是c的倍数,c是a—b差的因数。

  17、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  18、轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴

  19、长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。

  20.长方体有12条棱,分为三组,相对的4条棱长度相等。

  21、长方体有8个顶点。

  22、相交于一个顶点的三条棱的`长度分别叫做长方体的长、宽、高

  23、正方体有6个面,6个面都是正方形,6个面完全相等,正方体有12条棱,12条棱长度都相等,正方体有8个顶点。

  24、长方体棱长之和:(长+宽+高)×4长×4+宽×4+高×4。

  25、正方体棱长之和:棱长×12。

  26、长方体(正方体)6个面的总面积,叫做它的表面积。

  27、长方体表面积=(长×宽+宽×高+长×高)×2或长方体表面积=长×宽×2+宽×高×2+长×高×2。

  28、正方体表面积=棱长×棱长×6。

  29、计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3dm3m3

  30.棱长是1cm的正方体,体积是1cm3,棱长是1cm的正方体,体积是1dm3,棱长是1cm的正方体,体积是1m3

  31、长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3=a×a×aa3表示3个a相乘。

  32、相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升。

  33、一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  34、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。

  35、米表示

  (1)把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)。

  (2)把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米。

  36、当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算

  37、分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。

  38、带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。

  39、A是B的几分之几?用A÷B

  40、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

  41、几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。

  42、如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。

  43、分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。

  44、几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。

  45、把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。

  46、求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。

  47、如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。

  48、如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。

  49、两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。

  50、分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。

小学数学复习资料14

  一、统计表

  1、意义

  把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

  2、组成部分

  一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

  3、种类

  ①单式统计表:只含有一个项目的统计表。

  ②复式统计表:含有两个或两个以上统计项目的统计表。

  ③百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

  4、制作步骤

  ①搜集数据:通过查阅资料、询问她人、调查、实验等方法搜集数据。

  ②整理数据:要根据制表的.目的和统计的内容,对数据进行分类。

  ③设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

  ④正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

小学数学复习资料15

  【课题】数的认识

  【复习内容】教科书P76-77

  【复习提纲】

  1.你学过哪些数?结合p76主题图说说这些数的意义和读写法。

  2.整数、小数的数位顺序表,数位及计算单位。

  3.小数和分数的分类。分数、小数、百分数的互化方法。

  4.怎样比较两个数的大小?改写与省略的意义和方法。

  5.分数、小数的基本性质和应用。

  6.小数点移动位置与小数大小的变化。

  7.因数、倍数、质数、合数的'含义。

  8.找公因数、最大公因数、公倍数、最小公倍数的方法和应用。

  9.尝试完成“做一做”。

  【课题】数的运算

  【复习内容】教科书P80-82

  【复习提纲】

  1.我们学过哪些运算?举例说明每一种运算的含义。

  2.整数、分数、小数的运算有什么异同点?百分数呢?

  3.填写完整p80“0”和“1”在四则运算中的特殊情况,其中a为除数时要注意什么?

  4.四则混合运算的运算顺序。

  5.学过哪些运算定律?把表格填写完整。.完成例1,说说运用什么运算定律?

  6.结合例2说说解决问题时有哪些主要步骤?

  7.尝试完成“做一做”。

  【课题】式和方程

  【复习内容】教科书P80-82

  【复习提纲】

  1.用字母表示数的意义。举例说说用字母可以表示什么?

  2.用字母表示数时要注意什么?

  3.什么叫做方程、解方程、方程的解?

  4.解方程的依据是什么?

  5.结合例1和p85“做一做”说说可以用解方程和解比例解决哪些数学问题?

  6.尝试完成“做一做”。

  【课题】常见的量

  【复习内容】教科书P87

  【复习提纲】

  1.我们学过哪些量?各有哪些计量单位?相邻之间的进率是多少?

  2.完成下面的改写

  3.8吨=( )千克平方米=( )平方厘米

  50毫升=( )立方分米3500毫米=( )米

  250平方分米=( )平方米=( )平方厘米

  小结高级单位改写成低级单位,低级单位改写成高级单位的方法。

  3.完成下列改写

  3小时50分=( )分3米2分米=( )米

  70个月=( )年( )个月40.6立方分米=( )立方分米()立方厘米

  小结复名数改写成单名数,单名数改写成复名数的方法。

  4.尝试完成“做一做”。

  【课题】比和比例

  【复习内容】教科书P89

  【复习提纲】

  1.整理比和比例的意义、各部分名称、基本性质等知识。

  2.比和分数、除法有什么联系?

  3.化简比、求比值、解比例的方法。

  4.举例说说成正比例、反比例量的判断方法。

  【课题】数学思考

  【复习内容】教科书P91-93

  【复习提纲】

  1.解决例5的问题,你可以用哪些方法?怎样进行思考?找出的规律是什么?依此类推12个点,20个点呢?请写出算式。

  2.解决例6的问题可以分几个步骤进行思考?可以用哪些数学方法解决问题?在排列组合时要注意什么?

  3.例7中逻辑推理可以用什么方法解决?运用排除的方法推出哪两位班长是同班的?

  4.小结可以用哪些数学思想和方法解决数学问题?

【小学数学复习资料】相关文章:

小学数学复习资料11-02

小学数学复习资料15篇11-02

小学数学复习资料(15篇)11-02

小学数学复习资料(集合15篇)11-02

小学数学复习资料(合集15篇)11-02

数学整理复习资料12-12

数学总复习资料08-05

高考数学复习资料最新12-26

小学数学知识点分数的复习资料04-10

中考数学专题备考复习资料08-25