初中数学复习必看资料

时间:2022-09-03 09:49:03 考试资料 我要投稿
  • 相关推荐

初中数学复习必看资料

初中数学复习必看资料1

  因式分解的方法

初中数学复习必看资料

  1.十字相乘法

  (1)把二次项系数和常数项分别分解因数;

  (2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

  (3)确定合适的`十字图并写出因式分解的结果;

  (4)检验。

  2.提公因式法

  (1)找出公因式;

  (2)提公因式并确定另一个因式;

  ①找公因式可按照确定公因式的方法先确定系数再确定字母;

  ②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

  ③提完公因式后,另一因式的项数与原多项式的项数相同。

  3.待定系数法

  (1)确定所求问题含待定系数的一般解析式;

  (2)根据恒等条件,列出一组含待定系数的方程;

  (3)解方程或消去待定系数,从而使问题得到解决。

初中数学复习必看资料2

  一、轴对称与轴对称图形:

  1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

  2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  注意:对称轴是直线而不是线段

  3.轴对称的性质:

  (1)关于某条直线对称的两个图形是全等形;

  (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;

  (3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;

  (4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4.线段垂直平分线:

  (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

  (2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;

  ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

  5.角的平分线:

  (1)定义:把一个角分成两个相等的角的射线叫做角的平分线.

  (2)性质:①在角的平分线上的点到这个角的两边的距离相等.

  ②到一个角的两边距离相等的点,在这个角的平分线上.

  注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.

  6.等腰三角形的性质与判定:

  性质:

  (1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的.高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;

  (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;

  (3)等边对等角:等腰三角形的两个底角相等。

  说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:

  ①等腰三角形两底角的平分线相等;

  ②等腰三角形两腰上的中线相等;

  ③等腰三角形两腰上的高相等;

  ④等腰三角形底边上的中点到两腰的距离相等。

  判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

  7.等边三角形的性质与判定:

  性质:

  (1)等边三角形的三个角都相等,并且每个角都等于60°;

  (2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

  判定定理:有一个角是60°的等腰三角形是等边三角形。

  说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

  二、中心对称与中心对称图形:

  1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

  2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  3.中心对称的性质:

  (1)关于中心对称的两个图形是全等形;

  (2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;

  (3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

【初中数学复习必看资料】相关文章:

九上数学复习必看资料02-23

数学整理复习资料必看02-23

初三数学总复习的必看的资料02-23

高三数学复习资料必看02-23

高中数学总复习必看资料02-23

文言文复习课资料必看02-23

高考作文复习资料必看12-27

初中的数学总复习必备资料02-23

数学复习的资料范文03-02