《实际问题与方程》教学反思

时间:2024-06-22 12:09:40 教学反思 我要投稿

《实际问题与方程》教学反思

  作为一名到岗不久的人民教师,教学是重要的工作之一,教学反思能很好的记录下我们的课堂经验,快来参考教学反思是怎么写的吧!下面是小编为大家收集的《实际问题与方程》教学反思,欢迎阅读与收藏。

《实际问题与方程》教学反思

《实际问题与方程》教学反思1

  用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,教者在学生的数量关系的'分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。

  在复习了等式的性质后,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是我的最终目的,学生解答师生共同评价,在此我向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时我不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。

《实际问题与方程》教学反思2

  用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。

  如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?

  分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加X人,即(30+X)时人均旅游费用(800—10X)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”

  (2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的.动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。

  (3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。

  尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。

《实际问题与方程》教学反思3

  本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本节课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。通过本课的教学,我感到成功的地方有以下几个方面:

  1、创设问题情境,联系生活实际,激发学习动机,将学生置于问题情景中。比如在引课的.时候,通过各种打折甩卖的广告语引出问题:(1)商家把商品打折卖给我们会不会真的赔钱?(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。

  2、充分发挥学生的主体作用,让学生自觉参与到课堂中来。

  本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口述表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题,学会能从不同的角度去探求生活经验从而让学生掌握知识。

  3、探究方式灵活,以培养学生的创新精神,探究性学习关注的不仅是探究成果的大小,而是注重探究过程和方法。在探究的时候,适当掌握时间,能根据学生的探究情况及时引导。从而达到最优的探究效果。

  从以上情况我认为在教学中, 一定要注重学生积极性的调动。帮助学生设计恰当的学习活动,营造宽松和谐的学习氛围。教师注重开发生活中蕴含的各种教育因素,使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。当然本课还存在很多的不足,我认为主要有以下方面:

  1、探究的时间还需要考证,时间不易过长,应合理分配。

  2、有些题目原计划是不在数码展台上展示。有的题让学生板书并讲解,想法很好,但是实际操作起来学生占用的时间太长。

  3、最后学生自己编了一些实际的应用题,计划让学生自己上台去表演,把问题体现出来,但是由于时间的关系,所以本节课最精彩的最能掀起高潮的环节没有展示出来。

  针对以上的问题,在今后的教学中应该注意以下几个问题:

  1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。

  2、多给学生的语言表达的机会,即时表扬和鼓励。

  3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣。

《实际问题与方程》教学反思4

  一、4点说明

  1、单元中的地位及重难点;

  本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究。通过本节课的学习对学生的要求是:能够找出实际问题中的已知数和未知数,分析他们之间的关系,找出问题中的等量关系,体会建立数学模型的思想。通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的过程,感受数学的应用价值,提高分析问题、解决问题的能力。

  本节课是有理数、整式加减之后,以及在第三章2,3小节已经讨论过由实际问题建立一元一次方程和解决一元一次方的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节课选择了具有一定综合性的问题(“销售中的盈亏问题”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度。一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的`实际问题埋下伏笔。

  基于教材分析,我确定本节课的教学重难点是:建立实际问题的模型,让学生知道销售中的盈亏的算法。通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。

  2、教学思想;

  运用建模思想来指导七年级学生学习,在很大程度上是要在学生认知过程中建立起一种符号化的具有数学结构特征的“模型”载体,通过这样具有“模型”功能载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。

  3、育人思想;

  通过对盈亏问题的探索,让学生体验数学来源于生活,又服务于生活,从而激发学生学好数学的热情,培养学生严谨的学习态度和与刻苦钻研的顽强毅力。

  4、教与学的困惑、对策;

  我的困惑

  1、一部分学生不习惯用方程解决实际问题,偏爱算术方法;

  2、学生掌握等量关系较弱,等量关系式列不出来,影响方程成形。

  3、书写格式不规范,解方程过程中去分母,去括号,移项经常出错。

  优化对策

  1、优化教学设计,丰富数学课堂活动,让学生体会到列方程简单;

  2、选择能充分展示用方程解题思维上独特优势的练习题;

  3、设计有坡度,使学生会用已有知识解决一个问题,通过解决此问题有助于下一个问题的解决。

  二、3个设计特色

  1、教学模式:安康市初中数学“四环五课”型第二类概念课教学模式,即情景诱导—探究指导—展示归纳—变式练习。

  2、探究提纲简洁明了,层层深入。使学生能够在完成第一个题目的基础上,能独立完成第二个题目;在完成第一个和第二个题目的基础上。又能独立完成第三个题目。

  3。变式练习是在探究题目的基础上,通过改编得到的,着重体现了以探究为依据,以变式为重点。

  三、2个感悟

  1、在“情景诱导”中,激发学生兴趣。教师要通过智慧和艺术,充分展示数学的亲和力,拨动学生的好奇心,激发学生学习数学的原动力。结合授课内容,凭借图画、音乐、表演等手段,使学生有感、所悟、所惑、所想、所动。

  2、在“探究”中,引发学生数学思考。给学生充足的时间和和空间经历观察、实验、探究、猜想、验证和推理,积累多样化的数学经验,引发学生思考,提出问题。反思问题,解决问题。

  四、3个优化构想

  1、设计时充分考虑师生互动性。

  2、注重知识生成过程的教学,提高学生学习能力。

  3、评价要客观全面,面向全体,注重全程,以达到了解,促进,激励学生的作用。

《实际问题与方程》教学反思5

  求解有关浓度配比问题的应用题,关键是明确溶液“稀释”或“加浓”前后,哪些量不变,哪些量改变,从而建立等量关系。

  由实际问题引入的'目的在于使学生从直观上理解溶液在“稀释”或“加浓”前后有关量的变与不变.从而为最终使有关浓度配比问题的应用题顺利求解铺平道路。

《实际问题与方程》教学反思6

  用方程解决问题,学生五年级的时候就已经学过,所以掌握这种方法并不难。在上课之前,我以为不会有很大的困难,因为之前也一直在练习找数量关系。可是课堂效果告诉我,要突破这节课的难点,一定要引导学生用画图的方法分析问题。

  课的开始,我出示了一道复习题:青云小学九月份用水550立方米,十月份比九月份节约20%。十月份用水多少立方米?我让学生根据之前的解题经验分析问题,他们找到了单位“1”是“九月份用水量”,数量关系则找不出来。我引导学生理解“十月份比九月份节约20%”这句话,让学生明白十月份比九月份节约,表示十月份比九月份少,少了九月份的20%。接着出示例题:青云小学十月份用水440立方米,比九月份节约20%。九月份用水多少立方米?学生还是能找到单位“1”是“九月份用水量”,但是数量关系却还是找不清楚。我继续用刚才的方法,根据“比九月份节约20%”,说说谁比九月份节约?学生能知道十月份比九月份节约,节约九月份的20%,但是还是不能正确写出数量关系。

  课后在其他老师的指导下,我明白了,课上我没有引导学生用画图的方法来理解数量关系。虽然分析问题时,关键句、单位“1”都能找到,但就题目而讲题,学生并不能弄清楚其中的数量关系。通过画图,能让学生形象、直观地观察出数量之间的.关系。于是我又重新进行了讲解,引导学生根据题意画图,从图中找到正确的数量关系。学生不再像第一次那样,告诉我没听懂,有了图形,学生觉得清晰多了。

  虽然高年级的学生遇到的题会比较抽象,但是教师应有培养学生几何直观的意识,让学生在遇到较复杂的题时,能想到用画图的方法分析问题,解决问题。

《实际问题与方程》教学反思7

  新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。

  通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。

  1、本节课第一个例题是增长率问题,有一定难度,我在讲解时设置问题细化,从多方位多角度帮助学生解析这道题,这样的问题引导,既节省了课堂时间,又降低了解题难度。在学习方法上给学生一定的空间去交流、探索、思考,能够体现新课标让学生主动获取知识的思想。在例1讲完之后,我随即设置了两个练习加以巩固。

  2、在课堂上将更多教学时间留给学习小组,这样小组中,个人的`成功会带来团体的成功,进而导致团体内其他成员的成功,因而学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互尊重、相互欣赏。

  3、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

  4、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励,以及组织小组合作学习,帮助学生形成积极主动求知态度,课堂收效大。

  由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。同时我的分组以位置为准,前后交流,这样层次不大合理,有待于课前做好思考与准备。

《实际问题与方程》教学反思8

  列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。

  六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:

  一.重视关键句分析训练,提高学生的分析能力。

  解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。

  二.重视学生的语言训练,提高学生的表达能力。

  在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的.思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。

  在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;

  如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。

  通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。

  三.重视学生的综合训练,提高学生的整体思维。

  在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。

  在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。

  教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。

《实际问题与方程》教学反思9

  这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的'错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。

  一、兴趣入手,降低难度。

  解答例1这类应用题的关键是找题里数量间的相等关系,为了帮助学生理解题意,我通过介绍黑白相间的足球的知识(1970年墨西哥世界杯用球)激发学生兴趣,为学习新知识做了很多的铺垫。

  二、放手思考,选择最佳。

  在学生独立思考数量关系有困难的情况下,采用小组交流互助的方法,再加上线段图辅助,学生逐渐弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,让学生在讨论交流中选取最优数量关系列方程解答,这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。

  三、教会方法,同比知识。

  应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。

《实际问题与方程》教学反思10

  本课的教学内容是一个数(已知)是另一个数的几倍多(或少)几,求另一个数。教学注重的是解决问题的`过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。让学生明确正确找出题中的等量关系是最为关键的。通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。

  反思这一节课,做得好的方面是:一是从学生的认知水平出发,循序渐进,通过“句——式——方程”的思维过程,让学生感受方程解题的基本方法:即找到了等量关系,方程就自然而然,水到渠成了。 二是练习形式多样,练习有层次。由简到难,有坡度,但目的只有一样,就是让学生通过这些练习能很快找到等量关系,正确列出方程。

  不足的方面是:练习的重点在于找准数量关系式。课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,但在进行列方程解应用题时,只满足了让学生说出数量关系式是什么,应该让中下学生再再说说关键句是什么,是根据哪句话找出来的,分析题时可先用铅笔画出来,分清已知量和未知量,用相应的未知数和具体数字表示出来,转化成等式,从而把实际问题转化成数学问题,再利用已有知识解决问题。

《实际问题与方程》教学反思11

  在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。

  这一节共安排了三个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。

  所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为先学后教、问题教学、导学导练、当堂达标。

  补充说明两个没有体现出来的阶段

  课前预习阶段

  教师将学案精心编写好后,于课前发给学生,让学生在课前明确学习目标,并在学案的`指导下对课堂学习内容进行自主的预习。同时教师要对学习方法进行适当的指导,如要控制自己的预习时间,以提高效率;可以要求学生用红笔划出书中的重点、难点内容;带着学案上的问题看书,并标出自己尚存的疑问,带着问题走进课堂;逐步掌握正确的自学方法,有意识地培养自主学习的能力等等。教师要有意识地通过多种途径获得学生预习的反馈信息,以使上课的讲解更具针对性。

  课后巩固深化阶段

  课后教师要指导学生完成预习时有疑问而课堂上未能完成的问题,对学案进行及时的消化、整理、补充和归纳。同时教师要将希望生的学案收起,仔细审阅。对学案上反映出的个性问题及课堂上未解决的共性问题及时安排指导和讲解。做到教学一步一个脚印,以收到实效。

  体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。

《实际问题与方程》教学反思12

  本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:

  一、在教学设计上我通过两方面来突破重、难点:

  1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的知识有一个初步的认识。

  2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。

  二、在教学过程中我采用小组交流与合作的模式:

  1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的.参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。

  2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。

  三、课堂应注意改进的方面有:

  1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。

  2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。

  3、如果能把工作量变式为分数,能提升学生对工程问题的理解。

  4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。

《实际问题与方程》教学反思13

  本节课的教学设计侧重讲列方程解应用题的一般步骤,同时使学生初步感受到代数方法的优越性,从而激发学生学习的积极性。

  由于本节课是列方程解应用题的第一节课,只要学生能达到解题时步骤完整、格式正确就可以了。因此,本节课所选的例题及练习题中的'等量关系均是学生比较熟悉的,易于接受的.

《实际问题与方程》教学反思14

  从试题结构看,共分三个大题,包括填空题、选择题、解答题,相对来说试题比较简单。从学生的答卷来看,存在以下问题:

  一、学生计算能力总体差.

  如:最后计算题解一元二次方程时出错和一大题的一半出错.

  二、基础知识掌握不扎实如:

  填空题7题和10题,学生对一元二次方程和一元一次方程的条件理解不透彻

  根据题意列方程审题不清

  三、基本的概念定理不清楚

  如:选择题14和15题有关角平分线和垂直平分线定理的考查好多学生出错.15题是有关一元二次方程和一元一次方程和整式方程,分式方程的考查,包括有优生都出错.

  四、证明题逻辑思维不条理

  对于95%的学生证明步骤依然是他们的'弱点,是初三阶段的训练目标.

  针对上述问题,今后需采取以下措施:落实基础,提高学生的计算能力,加强审题能力的培养,规范学生的书写及解题格式的规范程度,针对我们班及格人数和其他班有差距,需要加强及格边缘学生的个别关注,尤其充分利用辅导课的时机有针对性的辅导.对不同的学生给以不同的关注,使每个学生都能克服其缺点以提高学习成绩.

《实际问题与方程》教学反思15

  教学内容:书本74页例2

  教学目标:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。

  教学重难点:找等量关系式列方程。

  教学过程:

  一、忆旧引新

  说说下面各题的等量关系:

  如:①、红花是黄花的`3倍

  ②、红花比黄花的3倍多2朵。(等)

  二、兴趣谈话引入新例(74页例2),后出示情景图。

  1、让生说说从图中知道了哪些信息?要解决什么问题?

  2、让生根据信息和问题列出题中的等量关系式,列出方程并解方程。

  板书:黑色皮的块数×2-4=白色皮的块数

  解:设共有x 块黑色皮。

  2x -4=20

  2x=20+4

  2x =24

  x=24÷2

  x =12

  答:-----------------。

  3、引导生用不同方法列方程。

  4、小结:列方程解决问题的主要步骤:①弄清题意,设未知量为x 。②分析题意,找等量关系。③根据等量关系列出方程。④解方程。⑤检验。

  三、巩固拓展:

  1、1.根据方程列出等量关系式。

  粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据( ),列方程:3x +12=72

  根据( ),列方程:72-3x =12

  2.先说说下列各题的数量关系,再列方程解决问题。

  花布每米35元,比黄布的3倍少12元。黄布每米多少元?(提示取值)

  四、作业:书本第75~76页第5、6、9题。

  教学反思:

  本节课是用方程解稍复杂的应用题,是在学生已有知识经验的基础上进行学习的,都是抓住解题关键,即先找出题里的等量关系,再根据等量关系列出方程并解答,再而检验。学生知道了用方程解答应用题的步骤。只是部分学生未会找题里等量关系,所以仍需多练。

【《实际问题与方程》教学反思】相关文章:

《实际问题与方程》教学反思12-17

《实际问题与方程》教学反思15篇03-27

《列方程解决实际问题》教学反思10-13

列方程解决简单的实际问题教学反思04-16

《列方程解决简单实际问题》教学反思04-05

五年级实际问题与方程教学反思12-05

方程教学反思04-11

《方程的意义》教学反思03-01

《认识方程》教学反思12-10

方程意义教学反思02-15