圆锥的体积教学反思

时间:2025-03-17 18:00:02 诗琳 教学反思 我要投稿

圆锥的体积教学反思(精选28篇)

  作为一位刚到岗的人民教师,我们要有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的圆锥的体积教学反思,欢迎阅读与收藏。

圆锥的体积教学反思(精选28篇)

  圆锥的体积教学反思 1

  《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  一、让学生经历发现、提问、解决问题的全过程

  新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的.生活问题,起到巩固深化知识点的作用。

  二、让学生在现实情境中体验和理解数学

  在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识

  1、情感的发展

  小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

  2、思想的发展

  小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。

  三、多层次设计练习题

  练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。

  在教学后感觉到遗憾的是,由于教具准备不足的关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。

  圆锥的体积教学反思 2

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的`同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3。”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

  圆锥的体积教学反思 3

  我认为这节课的设计与教学具有下面的特点:

  一、在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。

  二、在实验时,让学生小组合作亲自动手实验,以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体制的计算方法。这样的.学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  但是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,与学生生活联系还不是很紧密的。学生的问题意识不强,都有待探究。

  圆锥的体积教学反思 4

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的`过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

  圆锥的体积教学反思 5

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的'是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

  圆锥的体积教学反思 6

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

  再上这节课时,我加强了以下几个点的教学,收到了较好的.效果。

  1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

  4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算×32。又如:××(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算×12。这样就大大地减少了学生计算难度,提高了计算的正确率。

  圆锥的体积教学反思 7

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  《圆锥》这节课,其教学目标是:

  1)、认识圆锥,了解圆锥的底面、侧面和高;

  2)、掌握圆锥高的测量方法;

  3)、圆锥体积公式的推导;

  4)、通过例一例二使学生会应用圆锥公式进行简单的`计算。

  教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  圆锥的体积教学反思 8

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1、大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的.探究愿望。

  2、操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

  圆锥的体积教学反思 9

  实践出真知,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

  以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

  怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历提出猜测--设计实验--动手操作--得出公式的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的.主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

  推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出等底、等高这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

  圆锥的体积教学反思 10

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的`。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

  圆锥的体积教学反思 11

  《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,加深学生对形体的认识。然后让学生动手实验,以小组合作学习的.方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  由于本节课活动单设计合理,问题比较精细,学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出圆锥的体积公式,取得了较好的效果。具体分析如下:

  一、收获:

  1、探究圆锥体积计算方法的学习过程,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教学案的引导下学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出只有等底等高的圆柱和圆锥才有这样的关系,从而加深了等低等高的印象,进而得出圆锥的体积公式,让每个学生都经历一次探究学习的过程。

  3、学生在展示中获得了成功的喜悦,体验了探究的乐趣。

  自采用“活动单导学”教学模式以来,学生敢说、愿说、乐说,学生的语言能力及叙述问题的条理性、层次性有了明显的提高。在本节课中学生能够根据教学案中的问题进行思考、讨论,从而大胆展示,能够把动手实践和语言表达结合在一起,从而清楚地展示了圆锥的体积探究的全过程。这点值得充分的肯定。

  二、不足:

  1、。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

  2、学生在实验时要求不高,导致存在着误差。实验失败。

  3、学习困难的学生对于一些需要灵活判断的题目还是不能有较好的把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面。在与圆柱的体积的联系中,思维的灵活度不够。后来也感觉他们有出现一点点厌学的情绪,这是因为在最后他们把自己当成了倾听者。缺少了一种主动思维和思考的愿望。

  三、 措施:

  1、让学生养成良好的学习习惯,做题时认真仔细。

  2、鼓励学生利用课余时间间动手做一些学具,不仅会增强学生的动手操作能力,而且可以用到学习中去。

  3、教师要认真的去设计教学案,把每一个问题设计精细,小组合作学习才能真正发挥优势。

  圆锥的体积教学反思 12

  教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的'方法。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。

  思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。

  圆锥的体积教学反思 13

  上完《圆锥的体积》这节课,我反思了整堂课的教学,总的来说,上下来还是可以,通过学生大胆猜测圆锥的体积可能和什么形状的物体有关引入科学验证,然学生在两次倒水的过程中发现等底等高的圆柱与圆锥体积间的关系,由此引出圆锥的的体积公式V=Sh÷3,在整个教学过程中,我非常注重让学生参与教学的全过程,毕竟学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,验证自己的猜想,整个过程注重实事求是,认真分析自己的实验结论,培养了学生科学的实验观。教学中“圆锥的体积是圆柱的1/3,它们一定等底等高”这个环节我没有预先设计的,它是课堂中随机生成的,却让学生增加了知识,通过学生的.举例子,学生能发现当当圆柱和圆锥的底面积和高交叉相等时,圆锥的体积也是圆柱体的三分之一,因此这句话是错的。总而言之,这节课每个学生都经历了“猜想---实验---发现”的环节,不仅让学生获取了新知,也让学生体会到探索成功的乐趣。

  但课后反应的的作业情况来看,学生基本理解了圆锥的体积,但在计算时却经常忘记除以3。一些学习困难的学生对于稍微需要灵活判断的题目还是不能有较好地把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面,知识死记公式,不能灵活应用。

  圆锥的体积教学反思 14

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的'时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题.通过 “看一看 ”, “摸一摸 ”, “比一比 ”, “指一指 ”, “说一说 ”, “猜一猜 ”等问题情境,让学生亲身感受数学,在 “找 ”中学,在 “测 ”中学,在 “思 ”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学 “动 ”起来、 “活 ”起来,让学生在 “做 ”中学,使数学课堂焕发出生命活力。

  圆锥的体积教学反思 15

  在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

  《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的.密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

  圆锥的体积教学反思 16

  《圆锥的体积》是人教版小学数学六年级下册第三单元的内容之一,它是学生在学习了圆柱的认识,圆柱的表面积,圆柱的体积,圆锥的认识基础之上,学习的。这一堂课,我有幸邀请了三位同伴来听我的课,给我一定的指导,我也从中发现了自己的一些问题。

  这节课中,我注重学生操作的过程,我的'设想就是要学生经历这个过程。首先要让学生观察,我手中的学具,圆锥和圆柱有什么共同点?学生发现,它们是等底等高的。接下来,我提出问题,它们谁的体积大?但是关于这个问题,学生的回答,基本上没有答到点子上,有学生说,因为谁的表面积大,所以体积大。本来我预设中,很容易观察发现的体积对比,但是,因为我的提问,它们谁的体积大,为什么,这个为什么,让学生绞尽脑汁去想,去套一些内容。后来我反思,我应该先把圆锥放入圆柱里,让学生直接说出,圆锥的体积,比等底等高的圆柱体积小。或者用试验的方法,把圆锥的水,倒入圆柱,让学生直接得到体积比大小的结论。接下来,先让学生说说方法如何验证圆锥和等底等高圆柱体积之间的关系是什么?根据以前学的圆柱体积,学生得出了三个方法,排水法,实验法,测量体积法。根据一些情况,排水法无法实现。学具是空心的,会漂浮在水面,其次,学具有缝隙,水会渗进去。所以排水法,只是作为学生了解的方法,但并不实践。在试验环节,我没有说清楚具体的操作要求,导致个别学生在操作中,用圆柱的水,倒进圆锥里,这样难以得出正确的结论。大多数学生,听清了我的要求,几杯圆锥的水,可以倒入圆柱。学生很容易就得出了结论。我让学生在黑板上小组演示倒水的过程,同时,也让其他学生一起数杯数,也是加深试验结果。我多让几个学生说一说,圆锥和等底等高圆柱体积之间的关系,用了关联词,因为...所以...我也引导学生,多次强调,这样的关系一定有一个前提,圆锥和圆柱是等底等高的。为了验证这样的体积关系,我抽学生上讲台,利用测量法,来验证。当然,我在最后也强调,试验只是一种手段,得出的结论可能是不精确的,但是数学家验证了这一点,所以大家可以直接用这条结论。

  美中不足就是习题没有时间去练习。学生都有最佳遗忘曲线,如果没有练习题,学生的知识没有在最佳的时间去巩固去检测,对于真正理解知识,巩固知识是不利的。我设计的习题,都是书上的,还是缺乏一点趣味性、层次性。

  总之,这节课,不是很完美,有很多遗憾。以后的几何课中,我还是会多让学生历经操作的过程,学生在操作中观察、归纳、验证、总结。操作前,一定要讲清楚操作要求,还要预设更多可能会出现的

  情况,时间的把控要再精确一点,自己的教学语言,还更规范一些,多用一些激励语,以后的教学设计,尽量多考虑如何体现趣味性这个问题。

  圆锥的体积教学反思 17

  圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的.圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。

  记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!

  圆锥的体积教学反思 18

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  体积的推导,必须让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:

  V圆锥=1/3圆柱=1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d÷2)2h(知道直径和高)

  =1/3π(C÷2÷π)2h(知道周长和高)

  加强学生的.实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  圆锥的体积教学反思 19

  课前,我给每组学生准备一盆沙和等底等高的空心圆柱体、圆锥体各一个。课堂上组织学生4人一组,利用手中的学具一起来探索圆柱和圆锥体积之间的关系。

  学生们有的将圆锥中装满沙倒入圆柱中;有的将圆柱中装满沙倒入圆锥中……很快推导出圆锥的体积公式。在交流中,学生经常把“等底等高”漏掉,作业时不注意“等底等高”条件,错误率也很高。

  反思:教师为了让学生快速完成操作推导出公式,给学生准备学具,只让学生来体验得出结果的一部分操作。这样做截断了知识的本源,学生忽视了对“等底等高”这一重要条件的认识,因而对发现的规律认识不全面,最终运用规律去解决新问题时也错误百出。其实,教师可以让学生准备“等底等高”的圆柱、圆锥;不等底不等高的圆柱、圆锥,这样4组来装沙操作。这样的探究具有很强的选择性、探索性和创造性,学生在不断地测量、比较、猜测、验证中发现“只有圆柱与圆锥等底等高”,圆锥的.体积才是圆柱体积的1/3。

  收获:

  ①探究活动时,教师应避免探究问题开放中“材料过少”的现象;

  ②探究的问题应该在材料准备上开放;

  ③让学生在充足、具有比较性的实验操作材料的基础上达到全面探究的目的。

  圆锥的体积教学反思 20

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。一节课下来,我静心思考,有以下几点反思:

  一、学生动手操作,激发兴趣,培养了学生自主学习的精神。

  我在教学圆锥的体积计算公式时,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生在课前自己动手做实验,加深学生对圆柱和圆锥的认识。在课堂上改教师演示为学生分组动手实验,用圆锥装满水倒入和它等底等高的圆柱里的过程。

  并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式,这样就有一种水到渠成的感觉。同时也培养学生观察、操作、讨论、归纳、整理等技能,形成良好的学习习惯和认真操作的态度。

  二、激发学生的求知欲。

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的'结果,使学生获得了成功的喜悦。

  三、全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。

  特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。调动了学生的学习积极性,突出了学生的主体作用。

  总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知。

  圆锥的体积教学反思 21

  (课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)

  教学片断

  师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。

  小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。

  师:请同学们利用手中的圆柱和圆锥、沙子,从倒的次数看,研究两者体积之间有怎样的关系?

  生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。

  生2:三次倒满,圆锥的体积是圆柱的三分之一。

  生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。

  ……

  师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看, 将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的内容提出过疑问)

  学生议论纷纷。……

  师:你们说该怎么办?

  生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。

  师:什么情况下,圆锥的体积是圆柱的三分之一?

  生:等底等高。

  生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。

  案例反思

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的`差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.

  圆锥的体积教学反思 22

  本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,在本课的教学中,我首先提问复习圆柱的体积和圆锥特征,这部分内容对新课有铺垫作用,接着提问设疑激发学生探究兴趣,在开展实验探究活动。

  在探究圆锥体积计算方法的操作过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识。实验探究分为两组让学生用沙和水探究等底等高的圆柱和圆锥之间的关系,在空圆锥里装满沙子或水,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

  本课成功之处:

  1.让学生亲身经历圆锥体积计算公式的推导过程,弄清来龙去

  脉。在教学中,分两组进行实验探究:第一组是利用沙子做实验探究等底等高的圆柱和圆锥之间的关系,第二组利用水进行实验探究等底等高的圆柱和圆锥之间的关系,让学生通过倒水或倒沙,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的.圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,同时掌握了圆锥体积的计算公式,理解了算理。

  2.在教学中,设置分组实验让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。

  本课不足之处:

  1.课堂时间没有很好的把握,影响了课堂练时间。

  2.实验探究过程中只设计了两组,而且这两组实验采用的都是等底等高的圆柱圆锥进行实验,让学生直接感知了等底等高的圆柱和圆锥之间的关系。但是没有让学生理解如果不等底或不等高是的情况会不会得到这个结论呢?总之,这个实验操作设计还是不够完善。

  3.教学过程中不能使全体学生的能力都得到锻炼。

  所以,在以后的教学中,要做到课前充分准备,尽量避免教学疏漏。总之,这节课,学生都经历了“猜想---实验---发现”的自主探究学习的过程。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  圆锥的体积教学反思 23

  一节课下来,我静心思考,有以下几点反思:

  1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活的实际问题,加深学生印象。

  2、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的`结果,使学生获得了成功的喜悦。

  3、一节好的课,要有全体学生的积极参与,突出学生

  的主体作用。由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  圆锥的体积教学反思 24

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的.同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

  圆锥的体积教学反思 25

  本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。

  一、收获

  1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的.被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  二、不足:

  1、许多学生在计算过程中常忘记除以3,需要加强练习。

  2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。

  3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。

  4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。

  圆锥的体积教学反思 26

  圆锥的体积是在学习了圆锥的认识的基础上进行教学的。

  这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。

  第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调V=3SH的前提条件是等底等高。

  反思:这一环节让学生用转化的思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。

  全课反思:英国教育家思宾塞说过:“在教育中应该尽量鼓励个人发展的过程,应该引导儿童自己进行探究,自己去推理,给他们讲的应该尽量少,而引导他们去发现的应该尽量多,这样教师在教学中才能真正由重结果向重过程转变,成为学生的.组织者、引导者与合作者”。因此,这节课,我引导学生进行实验,放手让他们动手操作,在操作的过程中得出结论,突破教学难点,理解圆锥的体积计算方法。看着孩子们听到老师的称赞,他们那开心的笑脸,我想:只有让孩子们成为学习的主人,老师只做引导者和合作者,引导得当,合作愉快时,那我们就真正起到了教书育人的作用,还有谁不想学习数学这门有意义的课程呢? 1

  圆锥的体积教学反思 27

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。

  1、复习迁移,做好铺垫

  由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的`,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。

  2、创设情境,引入新知

  数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。

  3、实验操作,推导公式

  圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。

  4、自学尝试,解惑答疑

  为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。

  圆锥的体积教学反思 28

  本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。

  例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,

  让学生猜测圆锥的体积也可以借助我们已经学过的.图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。

  充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。

【圆锥的体积教学反思】相关文章:

圆锥的体积教学反思08-11

圆锥的体积教学反思10-19

《圆锥的体积》教学反思10-17

《圆锥的体积》教学反思08-27

《圆锥的体积》教学反思05-16

圆锥的体积教学反思05-16

《圆锥的体积》教学反思【集合】05-16

《圆锥体积》教学反思09-30

圆锥的体积教学反思(精选20篇)05-21

论文-AI自动生成器

万字论文 一键生成

输入题目 一键搞定毕业范文模板
AI原创 低重复率 附赠査重报告

点击生成
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

圆锥的体积教学反思(精选28篇)

  作为一位刚到岗的人民教师,我们要有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的圆锥的体积教学反思,欢迎阅读与收藏。

圆锥的体积教学反思(精选28篇)

  圆锥的体积教学反思 1

  《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  一、让学生经历发现、提问、解决问题的全过程

  新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的.生活问题,起到巩固深化知识点的作用。

  二、让学生在现实情境中体验和理解数学

  在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识

  1、情感的发展

  小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

  2、思想的发展

  小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。

  三、多层次设计练习题

  练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。

  在教学后感觉到遗憾的是,由于教具准备不足的关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。

  圆锥的体积教学反思 2

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的`同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3。”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

  圆锥的体积教学反思 3

  我认为这节课的设计与教学具有下面的特点:

  一、在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。

  二、在实验时,让学生小组合作亲自动手实验,以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体制的计算方法。这样的.学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  但是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,与学生生活联系还不是很紧密的。学生的问题意识不强,都有待探究。

  圆锥的体积教学反思 4

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的`过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

  圆锥的体积教学反思 5

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的'是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

  圆锥的体积教学反思 6

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

  再上这节课时,我加强了以下几个点的教学,收到了较好的.效果。

  1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

  4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算×32。又如:××(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算×12。这样就大大地减少了学生计算难度,提高了计算的正确率。

  圆锥的体积教学反思 7

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  《圆锥》这节课,其教学目标是:

  1)、认识圆锥,了解圆锥的底面、侧面和高;

  2)、掌握圆锥高的测量方法;

  3)、圆锥体积公式的推导;

  4)、通过例一例二使学生会应用圆锥公式进行简单的`计算。

  教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  圆锥的体积教学反思 8

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1、大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的.探究愿望。

  2、操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

  圆锥的体积教学反思 9

  实践出真知,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

  以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

  怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历提出猜测--设计实验--动手操作--得出公式的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的.主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

  推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出等底、等高这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

  圆锥的体积教学反思 10

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的`。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

  圆锥的体积教学反思 11

  《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,加深学生对形体的认识。然后让学生动手实验,以小组合作学习的.方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  由于本节课活动单设计合理,问题比较精细,学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出圆锥的体积公式,取得了较好的效果。具体分析如下:

  一、收获:

  1、探究圆锥体积计算方法的学习过程,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教学案的引导下学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出只有等底等高的圆柱和圆锥才有这样的关系,从而加深了等低等高的印象,进而得出圆锥的体积公式,让每个学生都经历一次探究学习的过程。

  3、学生在展示中获得了成功的喜悦,体验了探究的乐趣。

  自采用“活动单导学”教学模式以来,学生敢说、愿说、乐说,学生的语言能力及叙述问题的条理性、层次性有了明显的提高。在本节课中学生能够根据教学案中的问题进行思考、讨论,从而大胆展示,能够把动手实践和语言表达结合在一起,从而清楚地展示了圆锥的体积探究的全过程。这点值得充分的肯定。

  二、不足:

  1、。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

  2、学生在实验时要求不高,导致存在着误差。实验失败。

  3、学习困难的学生对于一些需要灵活判断的题目还是不能有较好的把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面。在与圆柱的体积的联系中,思维的灵活度不够。后来也感觉他们有出现一点点厌学的情绪,这是因为在最后他们把自己当成了倾听者。缺少了一种主动思维和思考的愿望。

  三、 措施:

  1、让学生养成良好的学习习惯,做题时认真仔细。

  2、鼓励学生利用课余时间间动手做一些学具,不仅会增强学生的动手操作能力,而且可以用到学习中去。

  3、教师要认真的去设计教学案,把每一个问题设计精细,小组合作学习才能真正发挥优势。

  圆锥的体积教学反思 12

  教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的'方法。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。

  思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。

  圆锥的体积教学反思 13

  上完《圆锥的体积》这节课,我反思了整堂课的教学,总的来说,上下来还是可以,通过学生大胆猜测圆锥的体积可能和什么形状的物体有关引入科学验证,然学生在两次倒水的过程中发现等底等高的圆柱与圆锥体积间的关系,由此引出圆锥的的体积公式V=Sh÷3,在整个教学过程中,我非常注重让学生参与教学的全过程,毕竟学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,验证自己的猜想,整个过程注重实事求是,认真分析自己的实验结论,培养了学生科学的实验观。教学中“圆锥的体积是圆柱的1/3,它们一定等底等高”这个环节我没有预先设计的,它是课堂中随机生成的,却让学生增加了知识,通过学生的.举例子,学生能发现当当圆柱和圆锥的底面积和高交叉相等时,圆锥的体积也是圆柱体的三分之一,因此这句话是错的。总而言之,这节课每个学生都经历了“猜想---实验---发现”的环节,不仅让学生获取了新知,也让学生体会到探索成功的乐趣。

  但课后反应的的作业情况来看,学生基本理解了圆锥的体积,但在计算时却经常忘记除以3。一些学习困难的学生对于稍微需要灵活判断的题目还是不能有较好地把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面,知识死记公式,不能灵活应用。

  圆锥的体积教学反思 14

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的'时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题.通过 “看一看 ”, “摸一摸 ”, “比一比 ”, “指一指 ”, “说一说 ”, “猜一猜 ”等问题情境,让学生亲身感受数学,在 “找 ”中学,在 “测 ”中学,在 “思 ”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学 “动 ”起来、 “活 ”起来,让学生在 “做 ”中学,使数学课堂焕发出生命活力。

  圆锥的体积教学反思 15

  在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

  《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的.密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

  圆锥的体积教学反思 16

  《圆锥的体积》是人教版小学数学六年级下册第三单元的内容之一,它是学生在学习了圆柱的认识,圆柱的表面积,圆柱的体积,圆锥的认识基础之上,学习的。这一堂课,我有幸邀请了三位同伴来听我的课,给我一定的指导,我也从中发现了自己的一些问题。

  这节课中,我注重学生操作的过程,我的'设想就是要学生经历这个过程。首先要让学生观察,我手中的学具,圆锥和圆柱有什么共同点?学生发现,它们是等底等高的。接下来,我提出问题,它们谁的体积大?但是关于这个问题,学生的回答,基本上没有答到点子上,有学生说,因为谁的表面积大,所以体积大。本来我预设中,很容易观察发现的体积对比,但是,因为我的提问,它们谁的体积大,为什么,这个为什么,让学生绞尽脑汁去想,去套一些内容。后来我反思,我应该先把圆锥放入圆柱里,让学生直接说出,圆锥的体积,比等底等高的圆柱体积小。或者用试验的方法,把圆锥的水,倒入圆柱,让学生直接得到体积比大小的结论。接下来,先让学生说说方法如何验证圆锥和等底等高圆柱体积之间的关系是什么?根据以前学的圆柱体积,学生得出了三个方法,排水法,实验法,测量体积法。根据一些情况,排水法无法实现。学具是空心的,会漂浮在水面,其次,学具有缝隙,水会渗进去。所以排水法,只是作为学生了解的方法,但并不实践。在试验环节,我没有说清楚具体的操作要求,导致个别学生在操作中,用圆柱的水,倒进圆锥里,这样难以得出正确的结论。大多数学生,听清了我的要求,几杯圆锥的水,可以倒入圆柱。学生很容易就得出了结论。我让学生在黑板上小组演示倒水的过程,同时,也让其他学生一起数杯数,也是加深试验结果。我多让几个学生说一说,圆锥和等底等高圆柱体积之间的关系,用了关联词,因为...所以...我也引导学生,多次强调,这样的关系一定有一个前提,圆锥和圆柱是等底等高的。为了验证这样的体积关系,我抽学生上讲台,利用测量法,来验证。当然,我在最后也强调,试验只是一种手段,得出的结论可能是不精确的,但是数学家验证了这一点,所以大家可以直接用这条结论。

  美中不足就是习题没有时间去练习。学生都有最佳遗忘曲线,如果没有练习题,学生的知识没有在最佳的时间去巩固去检测,对于真正理解知识,巩固知识是不利的。我设计的习题,都是书上的,还是缺乏一点趣味性、层次性。

  总之,这节课,不是很完美,有很多遗憾。以后的几何课中,我还是会多让学生历经操作的过程,学生在操作中观察、归纳、验证、总结。操作前,一定要讲清楚操作要求,还要预设更多可能会出现的

  情况,时间的把控要再精确一点,自己的教学语言,还更规范一些,多用一些激励语,以后的教学设计,尽量多考虑如何体现趣味性这个问题。

  圆锥的体积教学反思 17

  圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的.圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。

  记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!

  圆锥的体积教学反思 18

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  体积的推导,必须让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:

  V圆锥=1/3圆柱=1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d÷2)2h(知道直径和高)

  =1/3π(C÷2÷π)2h(知道周长和高)

  加强学生的.实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  圆锥的体积教学反思 19

  课前,我给每组学生准备一盆沙和等底等高的空心圆柱体、圆锥体各一个。课堂上组织学生4人一组,利用手中的学具一起来探索圆柱和圆锥体积之间的关系。

  学生们有的将圆锥中装满沙倒入圆柱中;有的将圆柱中装满沙倒入圆锥中……很快推导出圆锥的体积公式。在交流中,学生经常把“等底等高”漏掉,作业时不注意“等底等高”条件,错误率也很高。

  反思:教师为了让学生快速完成操作推导出公式,给学生准备学具,只让学生来体验得出结果的一部分操作。这样做截断了知识的本源,学生忽视了对“等底等高”这一重要条件的认识,因而对发现的规律认识不全面,最终运用规律去解决新问题时也错误百出。其实,教师可以让学生准备“等底等高”的圆柱、圆锥;不等底不等高的圆柱、圆锥,这样4组来装沙操作。这样的探究具有很强的选择性、探索性和创造性,学生在不断地测量、比较、猜测、验证中发现“只有圆柱与圆锥等底等高”,圆锥的.体积才是圆柱体积的1/3。

  收获:

  ①探究活动时,教师应避免探究问题开放中“材料过少”的现象;

  ②探究的问题应该在材料准备上开放;

  ③让学生在充足、具有比较性的实验操作材料的基础上达到全面探究的目的。

  圆锥的体积教学反思 20

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。一节课下来,我静心思考,有以下几点反思:

  一、学生动手操作,激发兴趣,培养了学生自主学习的精神。

  我在教学圆锥的体积计算公式时,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生在课前自己动手做实验,加深学生对圆柱和圆锥的认识。在课堂上改教师演示为学生分组动手实验,用圆锥装满水倒入和它等底等高的圆柱里的过程。

  并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式,这样就有一种水到渠成的感觉。同时也培养学生观察、操作、讨论、归纳、整理等技能,形成良好的学习习惯和认真操作的态度。

  二、激发学生的求知欲。

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的'结果,使学生获得了成功的喜悦。

  三、全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。

  特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。调动了学生的学习积极性,突出了学生的主体作用。

  总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知。

  圆锥的体积教学反思 21

  (课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)

  教学片断

  师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。

  小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。

  师:请同学们利用手中的圆柱和圆锥、沙子,从倒的次数看,研究两者体积之间有怎样的关系?

  生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。

  生2:三次倒满,圆锥的体积是圆柱的三分之一。

  生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。

  ……

  师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看, 将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的内容提出过疑问)

  学生议论纷纷。……

  师:你们说该怎么办?

  生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。

  师:什么情况下,圆锥的体积是圆柱的三分之一?

  生:等底等高。

  生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。

  案例反思

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的`差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.

  圆锥的体积教学反思 22

  本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,在本课的教学中,我首先提问复习圆柱的体积和圆锥特征,这部分内容对新课有铺垫作用,接着提问设疑激发学生探究兴趣,在开展实验探究活动。

  在探究圆锥体积计算方法的操作过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识。实验探究分为两组让学生用沙和水探究等底等高的圆柱和圆锥之间的关系,在空圆锥里装满沙子或水,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

  本课成功之处:

  1.让学生亲身经历圆锥体积计算公式的推导过程,弄清来龙去

  脉。在教学中,分两组进行实验探究:第一组是利用沙子做实验探究等底等高的圆柱和圆锥之间的关系,第二组利用水进行实验探究等底等高的圆柱和圆锥之间的关系,让学生通过倒水或倒沙,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的.圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,同时掌握了圆锥体积的计算公式,理解了算理。

  2.在教学中,设置分组实验让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。

  本课不足之处:

  1.课堂时间没有很好的把握,影响了课堂练时间。

  2.实验探究过程中只设计了两组,而且这两组实验采用的都是等底等高的圆柱圆锥进行实验,让学生直接感知了等底等高的圆柱和圆锥之间的关系。但是没有让学生理解如果不等底或不等高是的情况会不会得到这个结论呢?总之,这个实验操作设计还是不够完善。

  3.教学过程中不能使全体学生的能力都得到锻炼。

  所以,在以后的教学中,要做到课前充分准备,尽量避免教学疏漏。总之,这节课,学生都经历了“猜想---实验---发现”的自主探究学习的过程。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  圆锥的体积教学反思 23

  一节课下来,我静心思考,有以下几点反思:

  1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活的实际问题,加深学生印象。

  2、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的`结果,使学生获得了成功的喜悦。

  3、一节好的课,要有全体学生的积极参与,突出学生

  的主体作用。由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  圆锥的体积教学反思 24

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的.同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

  圆锥的体积教学反思 25

  本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。

  一、收获

  1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的.被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  二、不足:

  1、许多学生在计算过程中常忘记除以3,需要加强练习。

  2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。

  3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。

  4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。

  圆锥的体积教学反思 26

  圆锥的体积是在学习了圆锥的认识的基础上进行教学的。

  这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。

  第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调V=3SH的前提条件是等底等高。

  反思:这一环节让学生用转化的思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。

  全课反思:英国教育家思宾塞说过:“在教育中应该尽量鼓励个人发展的过程,应该引导儿童自己进行探究,自己去推理,给他们讲的应该尽量少,而引导他们去发现的应该尽量多,这样教师在教学中才能真正由重结果向重过程转变,成为学生的.组织者、引导者与合作者”。因此,这节课,我引导学生进行实验,放手让他们动手操作,在操作的过程中得出结论,突破教学难点,理解圆锥的体积计算方法。看着孩子们听到老师的称赞,他们那开心的笑脸,我想:只有让孩子们成为学习的主人,老师只做引导者和合作者,引导得当,合作愉快时,那我们就真正起到了教书育人的作用,还有谁不想学习数学这门有意义的课程呢? 1

  圆锥的体积教学反思 27

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。

  1、复习迁移,做好铺垫

  由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的`,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。

  2、创设情境,引入新知

  数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。

  3、实验操作,推导公式

  圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。

  4、自学尝试,解惑答疑

  为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。

  圆锥的体积教学反思 28

  本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。

  例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,

  让学生猜测圆锥的体积也可以借助我们已经学过的.图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。

  充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。

【圆锥的体积教学反思】相关文章:

圆锥的体积教学反思08-11

圆锥的体积教学反思10-19

《圆锥的体积》教学反思10-17

《圆锥的体积》教学反思08-27

《圆锥的体积》教学反思05-16

圆锥的体积教学反思05-16

《圆锥的体积》教学反思【集合】05-16

《圆锥体积》教学反思09-30

圆锥的体积教学反思(精选20篇)05-21